FaNaC

  • 文章类型: Journal Article
    FMRFamide,神经肽家族的一员,参与许多生理过程。FMRFamide激活的钠通道(FaNaC)是一个非电压门控的家族,阿米洛利敏感,由神经肽FMRFamide触发的Na+选择性通道。在本研究中,克隆了日本SepiellaFaNaC受体(SjFaNaC)的全长cDNA。SjFaNaC的cDNA长3004bp,开放阅读框(ORF)为1812bp,编码603个氨基酸残基,N端无信号肽。序列分析表明,SjFaNaC与其他头足类动物FaNaC具有很高的同一性,并与双壳类动物形成了姐妹进化枝。使用以AcFaNaC为模板的SWISS-MODEL预测蛋白质结构。实时定量PCR(qRT-PCR)显示,SjFaNaC转录本在女性和男性生殖器官中均高表达,以及中枢神经系统(CNS)的视叶和大脑。原位杂交(ISH)结果表明,SjFaNaCmRNA主要分布在视叶的延髓和深视网膜以及脑的食道上和食道下肿块中。亚细胞定位表明SjFaNaC蛋白位于HEK293T细胞的细胞内和细胞表面。总之,这些发现可能为将来探索SjFaNaC在头足类动物中的功能奠定基础。
    FMRFamide, a member of the neuropeptide family, is involved in numerous physiological processes. FMRFamide-activated sodium channels (FaNaCs) are a family of non-voltage-gated, amiloride-sensitive, Na+-selective channels triggered by the neuropeptide FMRFamide. In the present study, the full-length cDNA of the FaNaC receptor of Sepiella japonica (SjFaNaC) was cloned. The cDNA of SjFaNaC was 3004 bp long with an open reading frame (ORF) of 1812 bp, encoding 603 amino acid residues with no signal peptide at the N-terminus. Sequence analysis indicated that SjFaNaC shared a high identity with other cephalopods FaNaCs and formed a sister clade with bivalves. The protein structure was predicted using SWISS-MODEL with AcFaNaC as the template. Quantitative real-time PCR (qRT-PCR) revealed that SjFaNaC transcripts were highly expressed in both female and male reproductive organs, as well as in the optic lobe and brain of the central nervous system (CNS). Results of in situ hybridisation (ISH) showed that SjFaNaC mRNA was mainly distributed in the medulla and deep retina of the optic lobe and in both the supraesophageal and subesophageal masses of the brain. Subcellular localisation indicated that the SjFaNaC protein was localised intracellularly and on the cell surface of HEK293T cells. In summary, these findings may lay the foundation for future exploration of the functions of SjFaNaC in cephalopods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    FMRFamide门控Na[公式:参见正文]通道(FaNaC)是DEG/ENaC家族的成员,由神经肽激活,FMRFamide.有关FMRFamide依赖性门控的结构信息是,然而,仍然难以捉摸。因为FMRFamide的两种苯丙氨酸是FaNaC活化所必需的,我们假设FaNaC和FMRFamide之间的芳族-芳族相互作用对于FMRFamide识别和/或激活门控至关重要。这里,我们专注于FaNaC的指状结构域中的八个保守的芳香族残基,并通过诱变分析和计算机对接模拟测试了我们的假设。手指结构域中保守的芳香族残基的突变降低了FMRFamide的效力,这表明保守的芳香残基参与了FMRFamide依赖性的活化。在一些突变体中,FMRFamide门控电流的动力学也被显著改变。对接模拟的一些结果与FaNaC和FMRFamide中的芳族残基之间的芳族-芳族相互作用参与FMRFamide识别的假设一致。总的来说,我们的结果表明,FaNaC手指域中的保守芳族残基是FaNaC中配体识别和/或活化门控的重要决定因素。
    FMRFamide-gated Na[Formula: see text] channel (FaNaC) is a member of the DEG/ENaC family and activated by a neuropeptide, FMRFamide. Structural information about the FMRFamide-dependent gating is, however, still elusive. Because two phenylalanines of FMRFamide are essential for the activation of FaNaC, we hypothesized that aromatic-aromatic interaction between FaNaC and FMRFamide is critical for FMRFamide recognition and/or the activation gating. Here, we focused on eight conserved aromatic residues in the finger domain of FaNaCs and tested our hypothesis by mutagenic analysis and in silico docking simulations. The mutation of conserved aromatic residues in the finger domain reduced the FMRFamide potency, suggesting that the conserved aromatic residues are involved in the FMRFamide-dependent activation. The kinetics of the FMRFamide-gated currents were also modified substantially in some mutants. Some results of docking simulations were consistent with a hypothesis that the aromatic-aromatic interaction between the aromatic residues in FaNaC and FMRFamide is involved in the FMRFamide recognition. Collectively, our results suggest that the conserved aromatic residues in the finger domain of FaNaC are important determinants of the ligand recognition and/or the activation gating in FaNaC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Neuropeptides commonly signal by metabotropic GPCRs. In some mollusks and cnidarians, RFamide neuropeptides mediate fast ionotropic signaling by peptide-gated ion channels that belong to the DEG/ENaC family. Here we describe a neuropeptide system with a dual mode of signaling by both a peptide-gated ion channel and a GPCR. We identified and characterized a peptide-gated channel in the marine annelid Platynereis dumerilii that is specifically activated by Wamide myoinhibitory peptides derived from the same proneuropeptide. The myoinhibitory peptide-gated ion channel (MGIC) belongs to the DEG/ENaC family and is paralogous to RFamide-gated ion channels. Platynereis myoinhibitory peptides also activate a previously described GPCR, MAG. We measured the potency of all Wamides on both MGIC and MAG and identified peptides that preferentially activate one or the other receptor. Analysis of a single-cell transcriptome resource indicates that MGIC and MAG signal in distinct target neurons. The identification of a Wamide-gated ion channel suggests that peptide-gated channels are more diverse and widespread in animals than previously appreciated. The possibility of neuropeptide signaling by both ionotropic and metabotropic receptors to different target cells in the same organism highlights an additional level of complexity in peptidergic signaling networks.-Schmidt, A., Bauknecht, P., Williams, E. A., Augustinowski, K., Gründer, S., Jékely, G. Dual signaling of Wamide myoinhibitory peptides through a peptide-gated channel and a GPCR in Platynereis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    FMRFamide-gated Na+ channel (FaNaC) is a member of the DEG/ENaC family. Amino acid sequence of the second transmembrane region (TM2) of FaNaC is quite similar to that of the acid-sensing ion channels (ASIC) of the same family. In the upper part of TM2, there are two aspartate residues (D552 and D556 in Aplysia FaNaC, AkFaNaC) which construct two negative rings in the external vestibule. In the present study, we examined the function of D552/D556 mutants of AkFaNaC in Xenopus oocytes with special interest in Ca2+ sensitivity of FaNaC. The FMRFamide-evoked current through AkFaNaC was depressed by submillimolar Ca2+ such that the current in Ca2+-free condition was 2-3-fold larger than that in the control solution which contained 1.8 mM CaCl 2. Both D552 and D556 were found to be indispensable for the sensitivity of FaNaC to submillimolar Ca2+. Unexpectedly, however, both acidic residues were not essential for the inhibition by millimolar Ca2+ concentrations. The Ca2+-sensitive gating of FaNaC was recapitulated by an allosteric model in which Ca2+-bound channels are more difficult to open. The desensitization of FaNaC was also inhibited by Ca2+, which was abolished in some D552/D556 mutants. Structural models of FaNaC made by homology modeling showed that the distance between oxygen atoms of D552 and D556 on the adjacent subunits is close enough to coordinate Ca2+ in the nonconducting desensitized channel but not in the open channel. The results suggest that Ca2+ coordination between oxygen atoms of D552 and D556 disturbs the opening transition as well as the desensitization of FaNaC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号