FI, fluorescence imaging

  • 文章类型: Journal Article
    甲状腺癌,作为最常见的内分泌癌症之一,近年来发病率激增。这很可能是由于其传统诊断方式缺乏特异性和准确性,导致甲状腺结节的过度诊断。虽然有几种治疗选择,它们仅限于手术和131I放射治疗,这些治疗具有显著的副作用,因此不能满足恶性程度非常高的未分化甲状腺癌的治疗需求.利用光吸收的光学成像,折射和散射特性,不仅观察细胞的结构和功能,组织,器官,甚至整个有机体来协助诊断,但也可用于进行光学治疗,以实现甲状腺癌的靶向非侵入性和精确治疗。这些筛选的应用,诊断,和治疗,赋予光学成像在甲状腺癌手术导航领域的潜力。在过去的十年里,光学成像在甲状腺癌诊断和治疗中的研究逐年增长,但是没有发表关于这个主题的全面评论。这里,我们回顾了光学成像在甲状腺癌诊断和治疗中应用的关键进展,并讨论了该技术在临床应用中的挑战和潜力。
    Thyroid cancer, as one of the most common endocrine cancers, has seen a surge in incidence in recent years. This is most likely due to the lack of specificity and accuracy of its traditional diagnostic modalities, leading to the overdiagnosis of thyroid nodules. Although there are several treatment options available, they are limited to surgery and 131I radiation therapy that come with significant side effects and hence cannot meet the treatment needs of anaplastic thyroid carcinoma with very high malignancy. Optical imaging that utilizes optical absorption, refraction and scattering properties, not only observes the structure and function of cells, tissues, organs, or even the whole organism to assist in diagnosis, but can also be used to perform optical therapy to achieve targeted non-invasive and precise treatment of thyroid cancer. These applications of screening, diagnosis, and treatment, lend to optical imaging\'s promising potential within the realm of thyroid cancer surgical navigation. Over the past decade, research on optical imaging in the diagnosis and treatment of thyroid cancer has been growing year by year, but no comprehensive review on this topic has been published. Here, we review key advances in the application of optical imaging in the diagnosis and treatment of thyroid cancer and discuss the challenges and potential for clinical translation of this technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这里,在脂质体纳米平台中整合了eviodiamine(EVO)和光敏剂吲哚菁绿(ICG),用于口腔鳞状细胞癌(OSCC)的非侵入性诊断成像和联合治疗.EVO,作为从中药中提取的活性成分,不仅具有抗肿瘤化疗剂的功能,而且能够进行68Ga螯合,因此作为正电子发射断层扫描/计算机断层扫描(PET/CT)成像的造影剂。此外,EVO可以表现出过氧化物酶样的催化活性,将内源性肿瘤H2O2转化为细胞毒性活性氧(ROS),使化学催化疗法超越了众所周知的EVO化疗效果。体外和体内实验证明,由光学成像和PET/CT成像引导,研究表明,治疗性脂质体通过光动力疗法联合化学动力化疗对原位舌癌有明显的抑制作用。
    Here, evodiamine (EVO) and the photosensitizer indocyanine green (ICG) were integrated into a liposomal nanoplatform for noninvasive diagnostic imaging and combinatorial therapy against oral squamous cell carcinoma (OSCC). EVO, as an active component extracted from traditional Chinese medicine, not only functioned as an antitumor chemotherapeutic agent but was also capable of 68Ga-chelation, thus working as a contrast agent for positron emission tomography/computed tomography (PET/CT) imaging. Moreover, EVO could exhibit peroxidase-like catalytic activity, converting endogenous tumor H2O2 into cytotoxic reactive oxygen species (ROS), enabling Chemo catalytic therapy beyond the well-known chemotherapy effect of EVO. As proven by in vitro and in vivo experiments, guided by optical imaging and PET/CT imaging, we show that the theragnostic liposomes have a significant inhibiting effect on in situ tongue tumor through photodynamic therapy combined with chemodynamic chemotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号