Enzyme immobilization

酶固定化
  • 文章类型: Journal Article
    生物催化膜在各个工业部门具有巨大的潜力,酶的固定化是一个关键阶段。通过共价键固定酶对于大规模应用是复杂且耗时的过程。聚多巴胺(PDA)为酶固定化提供了更可持续和环保的替代品。因此,用聚多巴胺作为贻贝防污涂料的表面改性提高了防污性。在这项研究中,使用氰尿酰氯作为接头,将α-淀粉酶共价结合到生物活性PDA包被的聚醚砜(PES)膜表面。在温度和pH分别为55°C和6.5时,获得了固定在PES/PDA膜上的α-淀粉酶的最佳活性。固定化酶可以重复使用多达五个反应循环,初始活性保留55%。此外,在4℃下储存五周后,它保持了60%的活性。此外,固定化酶在淀粉水解过程中表现出增加的米氏常数和最大速度值。死端电池中各种膜的生物污染实验结果表明,PDA修饰后,PES膜的水通量从6722.7Lmh增加到7560.2Lmh。尽管由于亲水性增强,α-淀粉酶固定化将通量降低至7458.5Lmh,与未改性膜相比。这项研究的结果表明,通过共沉积产生的膜表现出优异的亲水性,增强涂层稳定性,和强大的防污性能,将其定位为工业应用的有前途的候选人。
    Biocatalytic membranes have great potential in various industrial sectors, with the immobilization of enzymes being a crucial stage. Immobilizing enzymes through covalent bonds is a complex and time-consuming process for large-scale applications. Polydopamine (PDA) offers a more sustainable and eco-friendly alternative for enzyme immobilization. Therefore, surface modification with polydopamine as mussel-inspired antifouling coatings has increased resistance to fouling. In this study, α-amylase enzyme was covalently bound to a bioactive PDA-coated polyethersulfone (PES) membrane surface using cyanuric chloride as a linker. The optimal activity of α-amylase enzyme immobilized on PES/PDA membrane was obtained at temperature and pH of 55°C and 6.5, respectively. The immobilized enzyme can be reused up to five reaction cycles with 55% retention of initial activity. Besides, it maintained 60% of its activity after being stored for five weeks at 4°C. Additionally, the immobilized enzyme demonstrated increased Michaelis constant and maximum velocity values during starch hydrolysis. The results of the biofouling experiment of various membranes in a dead-end cell demonstrated that the PES membrane\'s water flux increased from 6722.7 Lmh to 7560.2 Lmh after PDA modification. Although α-amylase immobilization reduced the flux to 7458.5 Lmh due to enhanced hydrophilicity, compared to unmodified membrane. The findings of this study demonstrated that the membrane produced through co-deposition exhibited superior hydrophilicity, enhanced coating stability, and strong antifouling properties, positioning it as a promising candidate for industrial applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    玉米芯是一种富含木质纤维素材料的农业残渣,可用于木糖醇生产,通过其酶转化获得可发酵糖及其随后的发酵。鉴于上述情况,本研究的目标是固定化曲霉木聚糖酶,并利用该衍生物水解玉米芯木聚糖以获得木糖,及其随后用于生产木糖醇。使用不同的支持物(海藻酸钠,DEAE-纤维素,DEAE-Sephadex和CM-Sephadex)。在所有使用的支持中,用DEAE-纤维素衍生物获得了最好的结果,显示了97-99%的固定化效率,产率为93-95%,恢复活性为81-100%。海藻酸钠衍生物显示3个循环的重复使用,在使用CaCl2和MnCl2作为交联剂的第3次循环中活性下降约65%。在55ºC和pH5.0下观察到DEAE-纤维素衍生物的最佳酶活性。该衍生物使用商业木聚糖作为底物重复使用10个循环,和使用玉米芯木聚糖的4个循环。该衍生物用于酶促反应器水解玉米芯木聚糖,在最佳温度和pH条件下,操作48h后获得2.7mg/mL的木糖。从玉米芯获得的木糖被热带假丝酵母发酵96小时,消耗量为60%。HPLC分析指示在发酵48小时时产生1.02mg/mL的木糖醇。总之,这是关于固定化拉布木聚糖酶作为从玉米芯木聚糖中获得木糖的替代方法的第一份报告,以及随后木糖醇的生产。
    Corncob is an agro-residue rich in lignocellulosic material that can be used for the xylitol production, through its enzymatic conversion obtaining fermentable sugars and their subsequent fermentation. In light of the above, this study targeted the immobilization of Aspergillus labruscus xylanase and the use of the derivative to hydrolyze the corncob xylan for the obtainment of xylose, and its subsequent use for the production of xylitol. The extracellular xylanase was immobilized using different supports (sodium alginate, DEAE-Cellulose, DEAE-Sephadex and CM-Sephadex). Among all supports used, the best results were obtained with the DEAE-Cellulose derivative showing an efficiency of immobilization of 97-99%, yield of 93-95% and recovered activity of 81-100%. The sodium alginate derivative showed 3 cycles of reuse, with drop in activity of about 65% in the 3rd cycle using both CaCl2 and MnCl2 as crosslinkers. The best enzymatic activity for the DEAE-Cellulose derivative was observed at 55ºC and pH 5.0. This derivative presented reuse of 10 cycles using commercial xylan as substrate, and 4 cycles using corncob xylan. This derivative was used in an enzymatic reactor to hydrolyze corncob xylan, obtaining 2.7 mg/mL of xylose after 48 h of operation under optimal condition of temperature and pH. The xylose obtained from the corncob was fermented by Candida tropicalis for 96 h with consumption of 60%. The HPLC analyses indicated a production of 1.02 mg/mL of xylitol with 48 h of fermentation. In conclusion, this is the first report on the immobilization of the A. labrucus xylanase as an alternative for the obtainment of xylose from corncob xylan, and the subsequent production of xylitol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    嗜热菌蛋白酶(TLN)是一种微生物高价的热稳定金属内切蛋白酶,具有与科学和工业中广泛用于蛋白质消化和凝乳的蛋白酶互补的底物特异性。本研究首次将TLN固定在胺化超顺磁性纳米粒子(Fe3O4@silica-NH2)上,旨在提高稳定性,可恢复性,可重用性,以及在蛋白水解和作为微生物凝乳酶样凝乳酶中的适用性。开发的纳米生物催化剂(Fe3O4@silica-TLN)在合成TLN基底上显示水解活性,显然,通过磁倾析从反应介质中完全回收。更重要的是,Fe3O4@silica-TLN在钙离子存在下保持TLN催化性能,即使暴露于60°C48小时,在4°C下储存80天,在室温下储存42天,用于蛋白水解,和牛奶凝固长达11个周期。它在24小时内对牛乳酪蛋白的蛋白水解活性提供了84个肽,其中29具有潜在的生物活性。此外,Fe3O4@二氧化硅-TLN催化消化牛血清白蛋白.总之,Fe3O4@silica-TLN是一种新的,更少的自溶,热稳定,无毒,磁性可分离,和可重复使用的纳米生物催化剂,具有对科学(肽/蛋白质化学和结构,蛋白质组学研究,以及寻找新的生物活性肽)和食品工业(奶酪制造)。
    Thermolysin (TLN) is a microbial highly-priced thermostable metallo-endoprotease with complementary substrate specificity to those of proteases widely used in science and industry for protein digestion and milk-clotting. This study is the first to immobilize TLN on aminated superparamagnetic nanoparticles (Fe3O4@silica-NH2) aiming for higher stability, recoverability, reusability, and applicability in proteolysis and as a microbial rennet-like milk-clotting enzyme. The nanobiocatalyst developed (Fe3O4@silica-TLN) displays hydrolytic activity on a synthetic TLN substrate and, apparently, was fully recovered from reaction media by magnetic decantation. More importantly, Fe3O4@silica-TLN retains TLN catalytic properties in the presence of calcium ions even after exposure to 60 °C for 48 h, storage at 4 °C for 80 days and room temperature for 42 days, use in proteolyses, and in milk-clotting for up to 11 cycles. Its proteolytic activity on bovine milk casein in 24 h furnished 84 peptides, of which 29 are potentially bioactive. Also, Fe3O4@silica-TLN catalyzed the digestion of bovine serum albumin. In conclusion, Fe3O4@silica-TLN showed to be a new, less autolytic, thermostable, non-toxic, magnetically-separable, and reusable nanobiocatalyst with highly attractive properties for both science (peptide/protein chemistry and structure, proteomic studies, and the search for new bioactive peptides) and food industry (cheese manufacture).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    利用碳酸酐酶(CA)催化CO2水合为碳捕获和利用提供了可持续且有效的方法。为了增强CA对成功的工业应用的可重用性和稳定性,酶的固定化是必不可少的。在这项研究中,脱木质素的竹纤维素是一种可再生的多孔支架,可通过氧化诱导的纤维素醛化,然后通过席夫碱键固定CA。使用p-NPA水解和CO2水合模型评估所得固定化CA的催化性能。与免费CA相比,固定在竹支架上可将CA的最佳温度和pH分别提高到约45°C和9.0。固定后,CA活性显示有效保留(>60%),具有更大的支架尺寸(即,8毫米直径和5毫米高度)对这方面有积极影响,甚至超过了自由CA的活动。此外,固定化CA在热处理和pH波动下表现出持续的可重用性和高稳定性,即使在5个催化循环后仍保持>80%的活性。当引入微藻培养时,固定化CA使生物量产量提高了约16%,伴随着微藻中必需生物分子的合成增强。总的来说,将CA固定化到竹纤维素块上的简便绿色结构显示出开发各种CA催化的CO2转化和利用技术的巨大潜力。
    Utilizing carbonic anhydrase (CA) to catalyze CO2 hydration offers a sustainable and potent approach for carbon capture and utilization. To enhance CA\'s reusability and stability for successful industrial applications, enzyme immobilization is essential. In this study, delignified bamboo cellulose served as a renewable porous scaffold for immobilizing CA through oxidation-induced cellulose aldehydation followed by Schiff base linkage. The catalytic performance of the resulting immobilized CA was evaluated using both p-NPA hydrolysis and CO2 hydration models. Compared to free CA, immobilization onto the bamboo scaffold increased CA\'s optimal temperature and pH to approximately 45 °C and 9.0, respectively. Post-immobilization, CA activity demonstrated effective retention (>60 %), with larger scaffold sizes (i.e., 8 mm diameter and 5 mm height) positively impacting this aspect, even surpassing the activity of free CA. Furthermore, immobilized CA exhibited sustained reusability and high stability under thermal treatment and pH fluctuation, retaining >80 % activity even after 5 catalytic cycles. When introduced to microalgae culture, the immobilized CA improved biomass production by ~16 %, accompanied by enhanced synthesis of essential biomolecules in microalgae. Collectively, the facile and green construction of immobilized CA onto bamboo cellulose block demonstrates great potential for the development of various CA-catalyzed CO2 conversion and utilization technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    膨润土是以蒙脱石为主要成分的非金属矿物。它是一种环保型矿物材料,储量大,分布广泛,和低价格。膨润土可以使用表面活性剂皂苷容易地有机改性以获得皂苷改性的膨润土(Sap-BT)。这项研究研究了通过Sap-BT物理吸附从杂色Trametes获得的粗酶的固定化。因此,开发了皂苷改性膨润土固定化粗酶(CE-Sap-BT)来去除苯并[a]芘。固定化提高了游离酶的稳定性。CE-Sap-BT在45°C和储存15d后可保持80%以上的活性。CE-Sap-BT对土壤中苯并[a]芘的去除率较高,在非常低的漆酶剂量(0.1U/3g土壤)下,高浓度苯并[a]芘污染的实际土壤在7d后为65.69%,在6d后为52.90%。CE-Sap-BT在污染场所的高催化和去除性能表现出更优异的实际应用价值。
    Bentonite is a non-metallic mineral with montmorillonite as the main component. It is an environmentally friendly mineral material with large reserves, wide distribution, and low price. Bentonite can be easily modified organically using the surfactant saponin to obtain saponin-modified bentonite (Sap-BT). This study investigates the immobilization of crude enzymes obtained from Trametes versicolor by physical adsorption with Sap-BT. Thus, saponin-modified bentonite immobilized crude enzymes (CE-Sap-BT) were developed to remove benzo[a]pyrene. Immobilization improves the stability of free enzymes. CE-Sap-BT can maintain more than 80% of activity at 45 °C and after storage for 15 d. Additionally, CE-Sap-BT exhibited a high removal rate of benzo[a]pyrene in soil, with 65.69% after 7 d in highly contaminated allotment soil and 52.90% after 6 d in actual soil contaminated with a low concentration of benzo[a]pyrene at a very low laccase dosage (0.1 U/3 g soil). The high catalytic and removal performance of CE-Sap-BT in contaminated sites showed more excellent practical application value.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固定化是应用生物催化中促进分离的关键使能技术,recovery,和非均相生物催化剂的再利用。然而,找到形成多酶系统的几种酶的一致固定方案是非常困难的,并且依赖于组合的试错方法。在这里,我们描述了一种方案,其中在96孔微量滴定板中测试了用不同反应基团官能化的17种不同载体,以筛选多达18种酶的多达21种固定化方案。该筛选包括活性和稳定性测定,以选择最佳的固定化化学,以实现最具活性和稳定的非均相生物催化剂。可以使用基于Python的应用程序CapiPy对从筛选中检索到的信息进行合理化。最后,通过对筛查结果进行评分,我们发现共识固定化方案可以组装固定化四酶系统,将乙酸乙烯酯转化为(S)-3-羟基丁酸。该方法为加快用于化学制造的固定化多酶途径的原型化开辟了途径。
    Immobilization is a key enabling technology in applied biocatalysis that facilitates the separation, recovery, and reuse of heterogeneous biocatalysts. However, finding a consensus immobilization protocol for several enzymes forming a multi-enzyme system is extremely difficult and relies on a combinatorial trial-and-error approach. Herein, we describe a protocol in which 17 different carriers functionalized with different reactive groups are tested in a 96-well microtiter plate to screen up to 21 immobilization protocols for up to 18 enzymes. This screening includes an activity and stability assay to select the optimal immobilization chemistry to achieve the most active and stable heterogeneous biocatalysts. The information retrieved from the screening can be rationalized using a Python-based application CapiPy. Finally, through scoring the screening results, we find the consensus immobilization protocol to assemble an immobilized four-enzyme system to transform vinyl acetate into (S)-3-hydroxybutyric acid. This methodology opens a path to speed up the prototyping of immobilized multi-enzyme pathways for chemical manufacturing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶在合成透明质酸(HA)等复杂生物分子中起着至关重要的作用。将酶固定在载体材料上对于它们在多个循环中的有效使用和再利用是必不可少的。微凝胶,由交联组成,高度溶胀的聚合物网络,是理想的酶吸收由于其高孔隙率。这项研究证明了使用不同的二价离子(Ni2,Co2+,Mn2+,Mg2+,和Fe2+)通过金属亲和结合。结果表明,使用Ni2+产生具有最高酶摄取和HA形成的微凝胶。固定化PmHAS能够重复酶促生产,生产高分子量的HA,在每个步骤中的分散性降低。此外,对于固定化PmHAS,实现了具有高分子量的HA的最高报道产率。该系统为连续形成HA奠定了基础,未来的工作可能会通过蛋白质工程增强PmHAS的稳定性。
    Enzymes play a vital role in synthesizing complex biological molecules like hyaluronic acid (HA). Immobilizing enzymes on support materials is essential for their efficient use and reuse in multiple cycles. Microgels, composed of cross-linked, highly swollen polymer networks, are ideal for enzyme uptake owing to their high porosity. This study demonstrates the immobilization of His6-tagged hyaluronan synthase from Pasteurella multocida (PmHAS) onto nitrilotriacetic acid functionalized microgels using different bivalent ions (Ni2+, Co2+, Mn2+, Mg2+, and Fe2+) via metal affinity binding. The results indicate that using Ni2+ yields the microgels with the highest enzyme uptake and HA formation. The immobilized PmHAS enables repetitive enzymatic production, producing high molecular weight HAs with decreasing dispersities in each step. Furthermore, the highest reported yield of HA with high molecular weight for immobilized PmHAS is achieved. This system establishes a foundation for continuous HA formation, with future works potentially enhancing PmHAS stability through protein engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固定化漆酶被广泛用作绿色生物催化剂,用于酚类污染物的生物修复和废水处理。金属有机骨架(MOFs)在漆酶固定化中具有潜在的应用价值。它们独特的吸附性能提供了吸附和生物降解的协同作用。本文的重点是使用漆酶-MOF复合材料对废水污染物进行生物修复,并总结了其生物降解的当前知识和未来前景以及酶固定化的增强策略。主要通过物理吸附研究了漆酶-MOF复合材料制备的机理策略,化学结合,和从头/共沉淀方法。讨论了MOFs的结构对固定化和生物修复效率的影响。此外,作为可持续技术,将漆酶和MOFs整合到废水处理过程中代表了解决工业污染带来的挑战的有希望的方法。MOF-漆酶复合材料可以是处理含有药物的废水的常规技术的有前途和可靠的替代品,染料,和酚类化合物。各种固定化技术的详细探索和MOF结构对性能的影响为优化这些复合材料提供了有价值的见解,为环境生物技术的未来发展铺平道路。这项研究的结果有可能影响工业废水处理,促进更清洁的处理工艺,并有助于可持续发展。
    Immobilized laccases are widely used as green biocatalysts for bioremediation of phenolic pollutants and wastewater treatment. Metal-organic frameworks (MOFs) show potential application for immobilization of laccase. Their unique adsorption properties provide a synergic effect of adsorption and biodegradation. This review focuses on bioremediation of wastewater pollutants using laccase-MOF composites, and summarizes the current knowledge and future perspective of their biodegradation and the enhancement strategies of enzyme immobilization. Mechanistic strategies of preparation of laccase-MOF composites were mainly investigated via physical adsorption, chemical binding, and de novo/co-precipitation approaches. The influence of architecture of MOFs on the efficiency of immobilization and bioremediation were discussed. Moreover, as sustainable technology, the integration of laccases and MOFs into wastewater treatment processes represents a promising approach to address the challenges posed by industrial pollution. The MOF-laccase composites can be promising and reliable alternative to conventional techniques for the treatment of wastewaters containing pharmaceuticals, dyes, and phenolic compounds. The detailed exploration of various immobilization techniques and the influence of MOF architecture on performance provides valuable insights for optimizing these composites, paving the way for future advancements in environmental biotechnology. The findings of this research have the potential to influence industrial wastewater treatment and promoting cleaner treatment processes and contributing to sustainability efforts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    过程强化对于生物催化的工业实施至关重要,可以通过在具有高效固定化生物催化剂的小型化反应器中进行连续过程操作来实现。使其长期使用。由于它们非常大的表面体积比,纳米材料是酶固定化的有希望的载体。在这项工作中,将不同的功能化纳米纤维非织造膜嵌入双平板微反应器中,以使流动中的六组氨酸(His6)标记的胺转氨酶(ATAs)能够固定.在测试的膜中,涂有Cu2离子的膜对His6标记的ATAs固定效果最佳,纯化的N-His6-ATA-wt酶的固定产率高达95.3%。此外,从大肠杆菌细胞裂解物中过量产生的酶开发了一种有效的一步酶固定化方法,并产生了高达1088UmL-1的酶负载。高酶负载导致使用连续操作的微反应器在不到4分钟的时间内从40mM(S)-α-甲基苄胺产生的苯乙酮的产率高达80%。在具有固定的His6标记的ATA构建体的5天连续微反应器操作中,保持了高达81%的初始活性。在指定时间内的最高周转数为7.23·106,这表明这种固定化方法先进的材料和反应器系统与工业实施高度相关。
    Process intensification is crucial for industrial implementation of biocatalysis and can be achieved by continuous process operation in miniaturized reactors with efficiently immobilized biocatalysts, enabling their long-term use. Due to their extremely large surface-to-volume ratio, nanomaterials are promising supports for enzyme immobilization. In this work, different functionalized nanofibrous nonwoven membranes were embedded in a two-plate microreactor to enable immobilization of hexahistidine (His6)-tagged amine transaminases (ATAs) in flow. A membrane coated with Cu2+ ions gave the best results regarding His6-tagged ATAs immobilization among the membranes tested yielding an immobilization yield of up to 95.3 % for the purified N-His6-ATA-wt enzyme. Moreover, an efficient one-step enzyme immobilization process from overproduced enzyme in Escherichia coli cell lysate was developed and yielded enzyme loads up to 1088 U mL-1. High enzyme loads resulted in up to 80 % yields of acetophenone produced from 40 mM (S)-α-methylbenzylamine in less than 4 min using a continuously operated microreactor. Up to 81 % of the initial activity was maintained in a 5-day continuous microreactor operation with immobilized His6-tagged ATA constructs. The highest turnover number within the indicated time was 7.23·106, which indicates that this immobilization approach using advanced material and reactor system is highly relevant for industrial implementation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手性胺是药物中必不可少的基序,农用化学品,和特种化学品。虽然传统的手性胺化学途径往往缺乏立体选择性,需要苛刻的条件,使用工程酶的生物催化方法可以在可持续条件下提供高效率和选择性。这篇综述讨论了转氨酶蛋白质工程的最新进展,氧化酶,和其他酶来提高催化性能。诸如定向进化等策略,固定化,和计算重新设计扩大了衬底范围,提高了效率。此外,以技术经济评估为指导的过程优化对于建立可行的生物制造路线至关重要。将最先进的酶工程与多方面的工艺开发相结合,将实现可扩展的,经济酶合成不同的手性胺目标。
    Chiral amines are essential motifs in pharmaceuticals, agrochemicals, and specialty chemicals. While traditional chemical routes to chiral amines often lack stereoselectivity and require harsh conditions, biocatalytic methods using engineered enzymes can offer high efficiency and selectivity under sustainable conditions. This review discusses recent advances in protein engineering of transaminases, oxidases, and other enzymes to improve catalytic performance. Strategies such as directed evolution, immobilization, and computational redesign have expanded substrate scope and enhanced efficiency. Furthermore, process optimization guided by techno-economic assessments has been crucial for establishing viable biomanufacturing routes. Combining state-of-the-art enzyme engineering with multifaceted process development will enable scalable, economical enzymatic synthesis of diverse chiral amine targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号