Entopeduncular Nucleus

穿核核
  • 文章类型: Journal Article
    快速眼动(REM)睡眠被认为可以促进情绪弹性,但是尚未发现任何介导这种情况的神经元回路。我们发现在老鼠身上,在REM睡眠期间,足盘核(EPSom)/内部苍白球中的生长抑素(Som)神经元主要活跃。这种独特的REM活动对于维持正常的REM睡眠是必要和充分的。抑制或刺激EPSom神经元减少或增加REM睡眠持续时间,分别。激活EPSom神经元的唯一下游靶标,Vglut2细胞在侧突(LHb),通过腹侧被盖区(VTA)增加睡眠。在4天内定期抑制LHb的简单化学遗传方案选择性地去除大量的累积REM睡眠。慢性,但不是急性的,REM减少与小鼠变得焦虑和对厌恶刺激更敏感相关。因此,我们建议累积快速眼动睡眠,部分由此处标识的EP→LHb→VTA电路生成,可能有助于稳定对习惯性厌恶刺激的反应。
    Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EPSom)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep. Inhibiting or exciting EPSom neurons reduced or increased REM sleep duration, respectively. Activation of the sole downstream target of EPSom neurons, Vglut2 cells in the lateral habenula (LHb), increased sleep via the ventral tegmental area (VTA). A simple chemogenetic scheme to periodically inhibit the LHb over 4 days selectively removed a significant amount of cumulative REM sleep. Chronic, but not acute, REM reduction correlated with mice becoming anxious and more sensitive to aversive stimuli. Therefore, we suggest that cumulative REM sleep, in part generated by the EP → LHb → VTA circuit identified here, could contribute to stabilizing reactions to habitual aversive stimuli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脑深部电刺激(DBS)是治疗帕金森病的一种非常有效的选择。然而,潜在的行动机制,特别是对神经元可塑性的影响,仍然神秘。脑室下区-嗅球(SVZ-OB)轴和齿状回(DG)中的成人神经发生与PD中的各种非运动症状有关,例如,记忆障碍和嗅觉功能障碍。由于DBS会影响这些非运动症状中的几种,我们分析了丘脑底核(STN)和足核(EPN)中DBS对6-羟基多巴胺(6-OHDA)损伤的半帕金森病大鼠神经发生的影响。
    在我们的研究中,我们在多巴胺能缺陷稳定的6-OHDA损伤大鼠中应用了为期五周的连续双侧STN-DBS或EPN-DBS,而6-OHDA损伤大鼠具有相应的假刺激。我们注射了两种胸苷类似物,以在DBS发作后早期和三周后定量新生神经元。免疫组织化学鉴定了与NeuN共同标记的新生细胞,OB和DG内的TH和GABA。作为一种推定机制,我们模拟了不同刺激部位的电场分布,分析了电对神经干细胞增殖的直接影响。
    STN-DBS持续增加OB中新生多巴胺能和GABA能神经元的数量,而DG中没有,而EPN-DBS不影响神经发生。这些作用似乎不是通过直接电刺激神经源性壁ni内的神经干/祖细胞介导的。
    我们的数据支持STN-DBS对成人神经发生的靶标特异性作用,帕金森病非运动症状的推定调节剂。
    UNASSIGNED: Deep brain stimulation (DBS) is a highly effective treatment option in Parkinson\'s disease. However, the underlying mechanisms of action, particularly effects on neuronal plasticity, remain enigmatic. Adult neurogenesis in the subventricular zone-olfactory bulb (SVZ-OB) axis and in the dentate gyrus (DG) has been linked to various non-motor symptoms in PD, e.g., memory deficits and olfactory dysfunction. Since DBS affects several of these non-motor symptoms, we analyzed the effects of DBS in the subthalamic nucleus (STN) and the entopeduncular nucleus (EPN) on neurogenesis in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats.
    UNASSIGNED: In our study, we applied five weeks of continuous bilateral STN-DBS or EPN-DBS in 6-OHDA-lesioned rats with stable dopaminergic deficits compared to 6-OHDA-lesioned rats with corresponding sham stimulation. We injected two thymidine analogs to quantify newborn neurons early after DBS onset and three weeks later. Immunohistochemistry identified newborn cells co-labeled with NeuN, TH and GABA within the OB and DG. As a putative mechanism, we simulated the electric field distribution depending on the stimulation site to analyze direct electric effects on neural stem cell proliferation.
    UNASSIGNED: STN-DBS persistently increased the number of newborn dopaminergic and GABAergic neurons in the OB but not in the DG, while EPN-DBS does not impact neurogenesis. These effects do not seem to be mediated via direct electric stimulation of neural stem/progenitor cells within the neurogenic niches.
    UNASSIGNED: Our data support target-specific effects of STN-DBS on adult neurogenesis, a putative modulator of non-motor symptoms in Parkinson\'s disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮质-基底神经节回路调节决策。这里,我们为成年斑马鱼生成了转基因工具,针对该回路组件的特定亚群,并利用它们来鉴定哺乳动物直接和间接途径纹状体神经元的进化同源物,它们分别投射到哺乳动物中的苍白球的内部和外部节段的同源物(腹侧端脑区[Vl]的背侧盘状核[dEN]和外侧核)。与哺乳动物不同,VL主要直接投影到DEN,不是通过丘脑底核。进一步的单细胞RNA测序分析揭示了两种苍白虫输出途径:直接连接dEN与pallium的主要捷径途径和通过丘脑的进化上保守的闭环。我们的资源和电路图为小型且可光学处理的斑马鱼大脑中基底神经节的功能研究提供了共同的基础,以全面了解皮质-基底神经节回路。
    The cortico-basal ganglia circuit mediates decision making. Here, we generated transgenic tools for adult zebrafish targeting specific subpopulations of the components of this circuit and utilized them to identify evolutionary homologs of the mammalian direct- and indirect-pathway striatal neurons, which respectively project to the homologs of the internal and external segment of the globus pallidus (dorsal entopeduncular nucleus [dEN] and lateral nucleus of the ventral telencephalic area [Vl]) as in mammals. Unlike in mammals, the Vl mainly projects to the dEN directly, not by way of the subthalamic nucleus. Further single-cell RNA sequencing analysis reveals two pallidal output pathways: a major shortcut pathway directly connecting the dEN with the pallium and the evolutionarily conserved closed loop by way of the thalamus. Our resources and circuit map provide the common basis for the functional study of the basal ganglia in a small and optically tractable zebrafish brain for the comprehensive mechanistic understanding of the cortico-basal ganglia circuit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    苍白球内部的深部脑刺激(DBS)(内锁核,EPN,在啮齿动物中)对于治疗药物难治性肌张力障碍很重要。这种运动障碍的病理生理学和DBS的机制在很大程度上是未知的。了解肌张力障碍动物模型中DBS的机制有助于优化DBS和附加疗法。我们最近发现,130赫兹的短期EPN-DBS(50µA,60µs)持续3小时改善了dtsz仓鼠的肌张力障碍,并减少了该模型脑切片中的自发性兴奋性皮质纹状体活动,表明对突触可塑性的快速影响。因此,在本研究中,我们检查了这些影响是否与c-Fos的变化有关,神经元活动的标志,在这些短期DBS或假刺激后,dtsz仓鼠的大脑中。在DBSvs.sham,电极周围的c-Fos强度增加,但是c-Fos+细胞的数量在整个EPN和投影区域内没有改变(have,丘脑)。DBS不会诱导纹状体和皮质c-Fos细胞作为运动皮质和纹状体中的GABA能(GAD67和小白蛋白反应性)神经元的变化。出乎意料的是,DBS后,c-Fos+细胞在小脑深部核(DCN)减少,提示在短期DBS期间小脑变化可能已经参与了抗张力障碍作用。然而,目前的结果不排除在基底神经节-丘脑-皮质网络内的功能变化,这将通过长期EPN刺激进行进一步研究。本研究表明,在对DBS在肌张力障碍中的机制进行持续检查时,小脑值得关注。
    Deep brain stimulation (DBS) of the globus pallidus internus (entopeduncular nucleus, EPN, in rodents) is important for the treatment of drug-refractory dystonia. The pathophysiology of this movement disorder and the mechanisms of DBS are largely unknown. Insights into the mechanisms of DBS in animal models of dystonia can be helpful for optimization of DBS and add-on therapeutics. We recently found that short-term EPN-DBS with 130 Hz (50 µA, 60 µs) for 3 h improved dystonia in dtsz hamsters and reduced spontaneous excitatory cortico-striatal activity in brain slices of this model, indicating fast effects on synaptic plasticity. Therefore, in the present study, we examined if these effects are related to changes of c-Fos, a marker of neuronal activity, in brains derived from dtsz hamsters after these short-term DBS or sham stimulations. After DBS vs. sham, c-Fos intensity was increased around the electrode, but the number of c-Fos+ cells was not altered within the whole EPN and projection areas (habenula, thalamus). DBS did not induce changes in striatal and cortical c-Fos+ cells as GABAergic (GAD67+ and parvalbumin-reactive) neurons in motor cortex and striatum. Unexpectedly, c-Fos+ cells were decreased in deep cerebellar nuclei (DCN) after DBS, suggesting that cerebellar changes may be involved in antidystonic effects already during short-term DBS. However, the present results do not exclude functional changes within the basal ganglia-thalamo-cortical network, which will be further investigated by long-term EPN stimulations. The present study indicates that the cerebellum deserves attention in ongoing examinations on the mechanisms of DBS in dystonia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    灵长类动物的苍白球(GP)通常分为不同的内部和外部。自1930年以来,文献重复了这样的观点,即啮齿动物中灵长类动物内部苍白球的同系物是下丘脑缠结核(嵌入在脑梗的纤维束中)。为了测试这个想法,我们探索了它的历史基础,检查了小鼠内隐神经元和苍白球神经元的发育和基因结构,并检查了相关的比较连通性数据。我们发现,脑外小鼠的内锁结构由四个不同的成分组成,这些成分沿着下丘脑的背腹序列排列。腹侧内截核(EPV),表达Dlx5&6和Nkx2-1的GABA能神经元位于下丘脑花梗室旁区域内。其他三个形成——背侧穿核核(EPD),前网状结构内锁核(EPPRt),和突出的内缩核(EPPEm)-位于上覆的室旁区域内,在皮层下.EPD包含表达Tbr1,Otp,Pax6EPPRt具有表达Isl1和Meis2的GABA能细胞,而EPPEm群体表达Foxg1并且可能是谷氨酸能的。对小鼠苍白/对角下皮层相关区域的基因结构观察表明,啮齿动物的GP与灵长类动物一样由两个相邻但在分子和病理学上可分化的端脑部分(均表达Foxg1)构成。这些和其他报道的数据反对以下观点:啮齿动物的脑外端核与灵长类动物的内部苍白球同源。相反,我们建议所有哺乳动物,包括啮齿动物,有双重次肌层GP成分,而灵长类动物可能也有一组类似的下丘脑内锁核。值得注意的是,端脑内部GP和下丘脑EPV的某些基因表达特性非常相似。这显然是他们值得注意的功能类比的基础,共享GABA能神经元和丘脑连接。
    The globus pallidus (GP) of primates is divided conventionally into distinct internal and external parts. The literature repeats since 1930 the opinion that the homolog of the primate internal pallidum in rodents is the hypothalamic entopeduncular nucleus (embedded within fiber tracts of the cerebral peduncle). To test this idea, we explored its historic fundaments, checked the development and genoarchitecture of mouse entopeduncular and pallidal neurons, and examined relevant comparative connectivity data. We found that the extratelencephalic mouse entopeduncular structure consists of four different components arrayed along a dorsoventral sequence in the alar hypothalamus. The ventral entopeduncular nucleus (EPV), with GABAergic neurons expressing Dlx5&6 and Nkx2-1, lies within the hypothalamic peduncular subparaventricular area. Three other formations-the dorsal entopeduncular nucleus (EPD), the prereticular entopeduncular nucleus (EPPRt ), and the preeminential entopeduncular nucleus (EPPEm )-lie within the overlying paraventricular area, under the subpallium. EPD contains glutamatergic neurons expressing Tbr1, Otp, and Pax6. The EPPRt has GABAergic cells expressing Isl1 and Meis2, whereas the EPPEm population expresses Foxg1 and may be glutamatergic. Genoarchitectonic observations on relevant areas of the mouse pallidal/diagonal subpallium suggest that the GP of rodents is constituted as in primates by two adjacent but molecularly and hodologically differentiable telencephalic portions (both expressing Foxg1). These and other reported data oppose the notion that the rodent extratelencephalic entopeduncular nucleus is homologous to the primate internal pallidum. We suggest instead that all mammals, including rodents, have dual subpallial GP components, whereas primates probably also have a comparable set of hypothalamic entopeduncular nuclei. Remarkably, there is close similarity in some gene expression properties of the telencephalic internal GP and the hypothalamic EPV. This apparently underlies their notable functional analogy, sharing GABAergic neurons and thalamopetal connectivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    许多帕金森病(PD)的体外和体内模型表明,垂体腺苷酸环化酶激活多肽(PACAP)在PD模型中主要通过其特异性PAC1受体(PAC1R)传递其强神经保护作用。我们最近描述了在PD的1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)模型中猕猴基底神经节中PAC1R蛋白含量的降低,该降低被左旋多巴治疗部分逆转。在这项工作中,我们测试了这些观察结果是否也发生在大鼠PD的鱼藤酮模型中。圆棒试验显示服用鱼藤酮后运动技能下降,苄丝肼/左旋多巴(B/L)治疗可逆转。蔗糖偏好测试表明抑郁水平增加,而开放场测试表明帕金森病大鼠的焦虑增加,无论接受B/L治疗。黑质致密质(SNpc)中的多巴胺能细胞计数减少了尾状壳核(CPu)中的多巴胺能纤维密度,并减少了中央突出的Edinger-Westphal核(EWcp)中的肽能细胞计数,支持鱼藤酮治疗的疗效。RNAscope原位杂交显示CPu中PACAPmRNA(Adcyap1)和PAC1RmRNA(Adcyap1r1)表达降低,苍白球,鱼藤酮治疗大鼠的多巴胺能SNpc和肽能EWcp,但是岛叶皮层没有明显的下调。在齿状核中,帕金森病动物中只有Adcyap1r1mRNA下调。B/L治疗仅在CPu中减弱Adcyap1的下调。我们目前的结果进一步支持PACAP/PAC1R系统在神经保护中的进化保守作用及其在PD等神经退行性状态的发展/进展中的募集。
    Numerous in vitro and in vivo models of Parkinson\'s disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近的研究表明,小脑和基底神经节在皮质下水平是相互联系的。然而,与下橄榄(IO)的皮质下基底神经节连接,作为橄榄小脑攀爬纤维系统的来源,不知道。我们使用了经典的追踪CTb,野生型狂犬病病毒逆行跨神经元感染,有条件追踪转基因狂犬病病毒,和检查艾伦大脑研究所提供的材料,研究大鼠和小鼠中潜在的基底神经节与下橄榄的连接。我们在这两个物种中都显示小白蛋白阳性,因此GABA,内吞核核中的神经元,代表苍白球内部的啮齿动物,支配一组围绕反屈肌束的细胞,这些细胞统称为前屈肌旁区域。由于这些神经元向下橄榄复合体的大部分提供直接的兴奋性输入,我们认为内吞核核,作为基底神经节的主要输出站,对橄榄兴奋性有抑制作用。因此,这种联系可能会影响橄榄小脑学习的参与和/或可能参与最近为橄榄小脑信号传导建立的奖励特性的传递。
    Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在帕金森病(PD)中,基底神经节多巴胺水平降低与神经元放电和运动功能障碍的改变有关。目前尚不清楚基底神经节神经元放电速率或模式的改变是否会导致帕金森病相关的运动功能障碍。在本研究中,我们显示,在PD小鼠模型中,去端核(EPN)的组胺能神经支配的增加导致EPN小清蛋白(PV)神经元通过与突触后H2R偶联的超极化激活环核苷酸门控(HCN)通道激活投射到丘脑运动核.同时,这种作用受到投射到EPN的丘脑底核(STN)谷氨酸能神经元的突触前H3R激活的负调节。值得注意的是,两种受体的激活均可改善帕金森病相关的运动功能障碍.EPNPV神经元中H2R的药理激活或HCN2的遗传上调,减少神经元爆发放电,改善与帕金森病相关的运动功能障碍,而与神经元放电率的变化无关。此外,EPNPV神经元的光遗传学抑制和EPN投射STNGlu神经元中H3R的药理学激活或遗传上调通过降低放电速率而不是改变EPNPV神经元的放电模式来改善帕金森病相关的运动功能障碍。因此,尽管EPNPV神经元的放电率降低和更规则的放电模式与帕金森病相关的运动功能障碍的改善相关,在这种情况下,射击模式似乎更为关键。这些结果还证实,靶向EPNPV神经元中的H2R及其下游HCN2通道和EPN投射STNGlu神经元中的H3R可能代表临床治疗帕金森病相关运动功能障碍的潜在治疗策略。
    In Parkinson\'s disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮质信息被转移到黑质网状结构(SNr)和带束核(EP),基底神经节(BG)的输出结构,通过三种不同的途径:超直接跨丘脑和直接和间接跨纹状体途径。黑质纹状体多巴胺(DA)和5-HT1A受体的激活,沿着BG分布,可以调节皮质信息的传输。我们旨在研究在正常和DA丢失条件下,丁螺环酮(5-HT1A受体部分激动剂)和WAY-100635(5-HT1A受体拮抗剂)对皮质-黑质和皮质-内脏传递的影响。在这里,在乌拉坦麻醉的假手术和6-羟基多巴胺(6-OHDA)损伤的大鼠给药前后,同时对运动皮质进行电刺激和SNr或EP神经元的单单位细胞外记录.运动皮层刺激诱发单相,双相,或三相反应,早期激励的组合,抑制,以及SNr和EP的后期激励,而在6-OHDA病变后的SNr中观察到诱发反应的模式改变。全身性丁螺环酮增强了假动物的直接皮质-SNr和皮质-EP传播,因为观察到抑制反应的持续时间增加。在DA去神经支配的动物中,丁螺环酮给药可增强皮质SNr传播中的早期兴奋幅度。在这两种情况下,观察到的效应是通过5-HT1A依赖性机制介导的,因为WAY-100635给药阻断了丁螺环酮的效应.这些发现表明,在控制条件下,丁螺环酮增强直接途径传播,DA损失调节与超直接途径相关的反应。总的来说,结果可能有助于理解5-HT1A受体和DA在运动皮质BG电路功能中的作用.
    Cortical information is transferred to the substantia nigra pars reticulata (SNr) and the entopeduncular nucleus (EP), the output structures of the basal ganglia (BG), through three different pathways: the hyperdirect trans-subthalamic and the direct and indirect trans-striatal pathways. The nigrostriatal dopamine (DA) and the activation of 5-HT1A receptors, distributed all along the BG, may modulate cortical information transmission. We aimed to investigate the effect of buspirone (5-HT1A receptor partial agonist) and WAY-100635 (5-HT1A receptor antagonist) on cortico-nigral and cortico-entopeduncular transmission in normal and DA loss conditions. Herein, simultaneous electrical stimulation of the motor cortex and single-unit extracellular recordings of SNr or EP neurons were conducted in urethane-anesthetized sham and 6-hydroxydopamine (6-OHDA)-lesioned rats before and after drug administrations. Motor cortex stimulation evoked monophasic, biphasic, or triphasic responses, combination of an early excitation, an inhibition, and a late excitation in both the SNr and EP, while an altered pattern of evoked response was observed in the SNr after 6-OHDA lesion. Systemic buspirone potentiated the direct cortico-SNr and cortico-EP transmission in sham animals since increased duration of the inhibitory response was observed. In DA denervated animals, buspirone administration enhanced early excitation amplitude in the cortico-SNr transmission. In both cases, the observed effects were mediated via a 5-HT1A-dependent mechanism as WAY-100635 administration blocked buspirone\'s effect. These findings suggest that in control condition, buspirone potentiates direct pathway transmission and DA loss modulates responses related to the hyperdirect pathway. Overall, the results may contribute to understanding the role of 5-HT1A receptors and DA in motor cortico-BG circuitry functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内缩核(EPN)和黑质网状结构(SNr)构成了基底神经节的输出核,但与SNr相比,对EPN的研究有限。两个细胞核都接受来自纹状体的投射,轴突含有P物质(SP)和大麻素1型受体(CB1R),这些物质的免疫反应性在纹状体和SNr中显示出互补的模式。在这项研究中,我们在小鼠EPN中发现了类似的互补性,将其与特定区域的神经元分布相结合,并定义了EPN的子区域。首先,EPN分为两个区域,一个显示低SP和高CB1R(lSP/hCB1R)免疫反应性,另一个显示高SP和低CB1R(hSP/lCB1R)。前者接受来自背外侧纹状体的输入,这些输入由感觉运动皮质支配,而后者接受来自边缘/关联皮质支配的内侧纹状体的输入。然后,lSP/hCB1R区进一步划分为头端EPN的背外侧亚区和尾端EPN的核心亚区,后者的特征是针对腹前腹侧外侧丘脑核的小白蛋白阳性神经元的浓度。将hSP/lCB1R区域划分为头端EPN的腹内侧亚区和尾端EPN的壳亚区,前者的特征是靶向外侧a(LHb)的一氧化氮合酶阳性神经元的浓度。靶向LHb的生长抑素阳性神经元广泛位于核心以外的三个亚区。这些发现阐明了基底神经节内部的结构组织,提出了通过CB1R具有不同突触调制的并行循环对不同信息进行排序的机制。
    The entopeduncular nucleus (EPN) and substantia nigra pars reticulata (SNr) constitute the output nuclei of the basal ganglia, but studies on the EPN are limited compared with those on the SNr. Both nuclei receive projections from the striatum with axons containing substance P (SP) and cannabinoid type-1 receptor (CB1R), and immunoreactivities for these substances show complementary patterns in the striatum and SNr. In this study, we revealed a similar complementarity in the mouse EPN, combined it with region-specific neuronal distributions, and defined subregions of the EPN. First, the EPN was divided into two areas, one showing low SP and high CB1R (lSP/hCB1R) immunoreactivities, and the other showing high SP and low CB1R (hSP/lCB1R). The former received inputs from the dorsolateral striatum that are innervated by sensorimotor cortices, whereas the latter received inputs from the medial striatum that are innervated by limbic/association cortices. Then, the lSP/hCB1R area was further divided into the dorsolateral subregion in the rostral EPN and the core subregion in the caudal EPN, the latter characterized by the concentration of parvalbumin-positive neurons targeting the ventral anterior-ventral lateral thalamic nucleus. The hSP/lCB1R area was divided into the ventromedial subregion in the rostral EPN and the shell subregion in the caudal EPN, the former characterized by the concentration of nitric oxide synthase-positive neurons targeting the lateral habenula (LHb). Somatostatin-positive neurons targeting the LHb were located diffusely in three subregions other than the core. These findings illuminate structural organization inside the basal ganglia, suggesting mechanisms for sorting diverse information through parallel loops with differing synaptic modulation by CB1R.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号