Energy storage devices

储能装置
  • 文章类型: Journal Article
    这项研究调查了基于聚环氧乙烷(PEO)和聚乙烯醇(PVA)的共混物的新型纳米复合膜的开发,该共混物中装有不同重量百分比的钴酸铜纳米颗粒(CuCo2O4NP)。主要目的是使用溶液浇铸技术制造这些纳米复合材料,并探索CuCo2O4含量对其结构的影响,光学,电气,和介电性能。通过水热法合成了尖晶石型CuCo2O4NPs,并将其掺入PEO/PVA共混物中。X射线衍射(XRD)分析表明,随着CuCo2O4含量的增加,聚合物基体向非晶态转变。UV-Vis光谱研究表明,纳米复合材料的直接和间接带隙均降低,在光电器件中的潜在应用。阻抗谱测量显示,含有1.8wt%CuCo2O4的纳米复合膜的离子电导率显着提高(比原始混合物高三个数量级)。由于各种极化机制的相互作用,聚合物纳米复合材料的实介电常数(ε')和虚介电常数(ε”)随频率的增加而降低。值得注意的是,与原始共混物相比,掺入1.8wt%的CuCo2O4纳米粒子导致能量密度的显着提高。此外,观察到潜在障碍显着降低。这些发现证明了PEO/PVA-CuCo2O4纳米复合薄膜的成功制备,电气,和介电性能。观察到的改进表明这些材料在能量存储装置和潜在的光电装置如发光二极管中的有希望的应用。
    This study investigates the development of novel nanocomposite films based on a blend of polyethylene oxide (PEO) and polyvinyl alcohol (PVA) loaded with varying weight percentages of copper cobaltite nanoparticles (CuCo2O4 NPs). The primary objective was to fabricate these nanocomposites using a solution casting technique and explore the influence of CuCo2O4 content on their structural, optical, electrical, and dielectric properties. Spinel-type CuCo2O4 NPs were synthesized via the hydrothermal method and incorporated into the PEO/PVA blend. X-ray diffraction (XRD) analysis revealed the transformation of the polymer matrix towards an amorphous state with increasing CuCo2O4 content. UV-Vis spectroscopy studies demonstrated a decrease in both the direct and indirect band gaps of the nanocomposites, suggesting potential applications in optoelectronic devices. Impedance spectroscopy measurements revealed a significant enhancement in ionic conductivity (three orders of magnitude higher than the pristine blend) for the nanocomposite film containing 1.8 wt% CuCo2O4. The real permittivity (ε\') and imaginary permittivity (ε″) of the polymer nanocomposites exhibited a decrease with increasing frequency due to the interplay of various polarization mechanisms. Notably, incorporating 1.8 wt% CuCo2O4 nanoparticles led to a remarkable improvement in energy density compared to the pristine blend. Additionally, a significant decrease in the potential barrier was observed. These findings demonstrate the successful fabrication of PEO/PVA-CuCo2O4 nanocomposite films with enhanced optical, electrical, and dielectric properties. The observed improvements suggest promising applications for these materials in energy storage devices and potentially in optoelectronic devices like light-emitting diodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氧化锰由于其具有多变的氧化还原特性,是储能领域的潜在试剂,高理论比电容和价壳电荷转移。另一方面,由于巨大的表面积,负担能力,可定制的构图,层状结构和高理论比电容,层状双氢氧化物,或LDH,引起了很多兴趣。本研究采用三电极设置来研究不同组成比的λ-二氧化锰/Cu-AlLDH复合材料的超电容性能。为了增强粘合和导电能力,为复合材料添加10%的CNT添加剂和PVDF粘合剂。在所有的复合材料中,在10mV/s的扫描速率下,具有最大重量百分比的λ-二氧化锰显示出最佳的电极性能,具有164F/g的优异的比电容。此外,使用对称的双电极设置,检查性能最好的电极。结果表明,在碱性电解质中,异常的电势窗口为2.7V,3A/g时的功率密度为4.04kW/kg,1A/g时的能量密度为20.32Wh/kg,和37F/g的比电容。
    Manganese oxide is a potential agent in the field of energy storage owing to its changeable redox characteristics, high theoretical specific capacitance and valence shells for charge transfer. On the other hand, due to huge surface area, affordability, customisable composition, layered structure and high theoretical specific capacitance, layered double hydroxides, or LDHs, have drawn a lot of interest. This study employs a three-electrode setup to investigate the supercapacitive performance of λ-manganese dioxide/Cu-Al LDH composite at different compositional ratios. To enhance the adhesive and conductivity capabilities, 10% of CNT additive and PVDF binder are added for the composites. Out of all the composites, the one with the greatest weight percentage of λ-manganese dioxide shows the best electrode performance with a superior specific capacitance of 164 F/g at a scan rate of 10 mV/s. Additionally, using a symmetrical two-electrode setup, the best-performing electrode is examined. The result shows an exceptional potential window of 2.7 V in a basic electrolyte, a power density of 4.04 kW/kg at 3 A/g, an energy density of 20.32 Wh/kg at 1 A/g, and a specific capacitance of 37 F/g.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    关于对集电器的腐蚀对电化学电容器的工作参数的影响的科学出版物的数量非常有限。当前研究的目的是寻找新的,环保的化学电源和储能设备,并改进现有的。因此,本文提出了一种简单有效的方法,通过改变电极极化方向来提高对称电化学电容器的寿命,这反过来又抑制了集电器的腐蚀。这减缓了长持续时间内正电极的集电器的劣化。然而,活性炭电极也会发生腐蚀。对具有不锈钢和金集电器的电容器的实验表明,后者的使用寿命比前者长得多。因此,集流体腐蚀对电化学电容器操作具有明显和有害的影响。此外,研究结果表明,集电器的腐蚀破坏是碳腐蚀的结果。
    The number of scientific publications on the impact of corrosion on current collectors on the working parameters of electrochemical capacitors is very limited. The aim of current research is to search for new, environmentally friendly chemical power sources and energy storage devices and to improve existing ones. Therefore, this article presents a simple and effective way to improve the life of a symmetric electrochemical capacitor by changing the direction of electrode polarization, which in turn inhibits the corrosion of the current collector. This slows the degradation of current collectors of positive electrode over long durations. However, activated carbon electrode corrosion also occurs. Experiments on capacitors with stainless steel and gold current collectors indicate that the lifespan of the latter is much longer than that of the former. Therefore, current collector corrosion has a distinct and detrimental impact on electrochemical capacitor operation. Moreover, the research results indicate that carbon corrosion results from current collector corrosive damage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重的Zn枝晶生长和碳基阴极性能不足是阻碍柔性Zn离子微型超级电容器(FZC)实际应用的两个关键问题。在这里,提出了一种阴极和阳极同步改进的自适应电极设计概念,以提高FZCs的整体性能。在阴极侧掺杂有抗膨胀氧化石墨烯和丙烯酰胺(PPy/GO-AM)的聚吡咯可以表现出显著的电化学性能,包括良好的电容和循环稳定性,以及特殊的机械性能。同时,包含还原氧化石墨烯和聚丙烯酰胺的坚固的保护性聚合物层在阳极侧自组装到Zn表面(rGO/PAM@Zn)上,通过这种方法可以有效缓解锌小突起的“尖端效应”,锌离子分布均匀化,枝晶生长受限。受益于这些优势,FZC在1mAcm-2时具有125mFcm-2(125Fcm-3)的出色比电容,最大能量密度为44.4µWhcm-2,并具有出色的长期耐用性,在5000次循环后仍保持90.3%的电容。这种共形电极设计策略被认为通过同时解决Zn阳极和电容型阴极所面临的挑战,启发了高性能平面柔性Zn基电化学能量存储设备(EESD)的实际设计。
    The severe Zn-dendrite growth and insufficient carbon-based cathode performance are two critical issues that hinder the practical applications of flexible Zn-ion micro-ssupercapacitors (FZCs). Herein, a self-adaptive electrode design concept of the synchronous improvement on both the cathode and anode is proposed to enhance the overall performance of FZCs. Polypyrrole doped with anti-expansion graphene oxide and acrylamide (PPy/GO-AM) on the cathode side can exhibit remarkable electrochemical performance, including decent capacitance and cycling stability, as well as exceptional mechanical properties. Meanwhile, a robust protective polymeric layer containing reduced graphene oxide and polyacrylamide is self-assembled onto the Zn surface (rGO/PAM@Zn) at the anode side, by which the \"tip effect\" of Zn small protuberance can be effectively alleviated, the Zn-ion distribution homogenized, and dendrite growth restricted. Benefiting from these advantages, the FZCs deliver an excellent specific capacitance of 125 mF cm-2 (125 F cm-3) at 1 mA cm-2, along with a maximum energy density of 44.4 µWh cm-2, and outstanding long-term durability with 90.3% capacitance remained after 5000 cycles. This conformal electrode design strategy is believed to enlighten the practical design of high-performance in-plane flexible Zn-based electrochemical energy storage devices (EESDs) by simultaneously tackling the challenges faced by Zn anodes and capacitance-type cathodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    锌混合超级电容器(Zn-HSC)在下一代储能系统中具有巨大潜力,有效地跨越了传统锂离子电池(LIBs)和超级电容器之间的鸿沟。不幸的是,大多数Zn-HSC的能量密度尚未与LIBs中观察到的水平相媲美。水性Zn-HSC的电化学性能可以通过具有硫醇部分的基于石墨烯的阴极材料的化学官能化来增强,因为它们将高度适合于有利于Zn2+吸附/解吸。这里,采用单步反应合成硫醇官能化还原氧化石墨烯(rGOSH),结合氧官能团(OFG)和硫醇官能团,如X射线光电子能谱(XPS)研究所示。电化学分析表明,rGOSH阴极在0.1Ag-1时具有比电容(540Fg-1)和比容量(139mAhg-1)以及长期稳定性,10.000次循环后电容保持率超过92%,表现优于化学还原氧化石墨烯(CrGO)。值得注意的是,rGOSH电极的最大能量密度为187.6Whkg-1,功率密度为48.6kWkg-1。总的来说,这项研究为阴极材料的设计和优化提供了前所未有的强大策略,为高效和可持续的储能解决方案铺平道路,以满足现代能源应用日益增长的需求。
    Zinc hybrid supercapacitors (Zn-HSCs) hold immense potential toward the next-generation energy storage systems, effectively spanning the divide between conventional lithium-ion batteries (LIBs) and supercapacitors. Unfortunately, the energy density of most of Zn-HSCs has not yet rivalled the levels observed in LIBs. The electrochemical performance of aqueous Zn-HSCs can be enhanced through the chemical functionalization of graphene-based cathode materials with thiol moieties as they will be highly suitable for favoring Zn2+ adsorption/desorption. Here, a single-step reaction is employed to synthesize thiol-functionalized reduced graphene oxide (rGOSH), incorporating both oxygen functional groups (OFGs) and thiol functionalities, as demonstrated by X-ray photoelectron spectroscopy (XPS) studies. Electrochemical analysis reveals that rGOSH cathodes exhibit a specific capacitance (540 F g-1) and specific capacity (139 mAh g-1) at 0.1 A g-1 as well as long-term stability, with over 92% capacitance retention after 10 000 cycles, outperforming chemically reduced graphene oxide (CrGO). Notably, rGOSH electrodes displayed an exceptional maximum energy density of 187.6 Wh kg-1 and power density of 48.6 kW kg-1. Overall, this study offers an unprecedented powerful strategy for the design and optimization of cathode materials, paving the way for efficient and sustainable energy storage solutions to meet the increasing demands of modern energy applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 塑料是当代全球化时期我们日常生活的重要组成部分;它们存在于现代生活的各个方面。由于市场上使用的大部分合成塑料本质上是不可生物降解的,在聚合物主导的时代,与它们的污染相关的问题是不可避免的。聚对苯二甲酸乙二醇酯(PET),广泛应用于汽车等行业,包装,纺织品,食物,和饮料生产代表了这些不可生物降解的聚合物生产的主要份额。鉴于其在各个部门的广泛应用,PET的使用会导致大量的消费后废物,其中大部分需要在一段时间后处置。然而,聚合物废料的回收已成为研究中的一个突出课题,由不断增长的环境意识驱动。许多研究表明,从聚合物废物中提取的产品可以在不同的部门转化为新的聚合物资源,包括有机涂料和再生医学。这篇综述旨在巩固有关回收PET废物用于电化学设备应用的重要科学文献。它还强调了当前在扩大这些工艺用于工业应用方面的挑战。
    Plastics are a vital component of our daily lives in the contemporary globalization period; they are present in all facets of modern life. Because the bulk of synthetic plastics utilized in the market are non-biodegradable by nature, the issues associated with their contamination are unavoidable in an era dominated by polymers. Polyethylene terephthalate (PET), which is extensively used in industries such as automotive, packaging, textile, food, and beverages production represents a major share of these non-biodegradable polymer productions. Given its extensive application across various sectors, PET usage results in a considerable amount of post-consumer waste, majority of which require disposal after a certain period. However, the recycling of polymeric waste materials has emerged as a prominent topic in research, driven by growing environmental consciousness. Numerous studies indicate that products derived from polymeric waste can be converted into a new polymeric resource in diverse sectors, including organic coatings and regenerative medicine. This review aims to consolidate significant scientific literatures on the recycling PET waste for electrochemical device applications. It also highlights the current challenges in scaling up these processes for industrial application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2D纳米材料在实现可穿戴储能设备的高性能柔性电极方面发挥着关键作用,由于其表面积大的优点,高导电性和高强度。电极是一个复杂的系统,其性能取决于多个相互关联的因素,包括材料的固有特性以及从宏观到原子尺度的不同尺度的结构。已经开发了多尺度设计策略来设计结构,以充分利用二维材料的潜力并减轻其缺点。分析设计策略和理解工作机制对于促进整合和收获协同效应至关重要。这篇综述总结了用于开发基于二维纳米材料的柔性电极的从宏观到微/纳米尺度结构和原子尺度结构的多尺度设计策略。首先简要介绍2D纳米材料,然后对不同尺度的结构设计策略进行分析,重点是阐明结构-性质关系,并以提出挑战和未来前景结束。这篇评论强调了集成多尺度设计策略的重要性。这篇综述的发现可能会加深对电极性能的理解,并为设计基于二维纳米材料的柔性电极提供有价值的指南。
    2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高负载电极在设计实用的高能电池中起着至关重要的作用,因为它们减少了非活性材料的比例,如电流分离器,收藏家,和电池包装组件。这种设计方法不仅提高了电池性能,而且有利于更快的加工和组装,最终导致生产成本的降低。尽管现有的策略,以提高可充电电池的性能,主要关注新型电极材料和高性能电解质,大多数报道的高电化学性能是通过低负载的活性材料(<2mgcm-2)实现的。如此低的负载,然而,不符合应用要求。此外,当试图扩大活性材料的负载时,确定了重大挑战,包括缓慢的离子扩散和电子传导动力学,体积膨胀,高反应屏障,以及与常规电极制备工艺相关的限制。不幸的是,这些问题经常被忽视。在这次审查中,深入讨论了导致高负载电极电化学性能衰减的机理。此外,高效的解决方案,如掺杂和结构设计,是为了应对这些挑战而总结的。根据目前的成就,这项审查提出了未来的发展方向,并确定了必须解决的技术挑战,以促进高能量密度可充电电池的商业化。
    High-loading electrodes play a crucial role in designing practical high-energy batteries as they reduce the proportion of non-active materials, such as current separators, collectors, and battery packaging components. This design approach not only enhances battery performance but also facilitates faster processing and assembly, ultimately leading to reduced production costs. Despite the existing strategies to improve rechargeable battery performance, which mainly focus on novel electrode materials and high-performance electrolyte, most reported high electrochemical performances are achieved with low loading of active materials (<2 mg cm-2). Such low loading, however, fails to meet application requirements. Moreover, when attempting to scale up the loading of active materials, significant challenges are identified, including sluggish ion diffusion and electron conduction kinetics, volume expansion, high reaction barriers, and limitations associated with conventional electrode preparation processes. Unfortunately, these issues are often overlooked. In this review, the mechanisms responsible for the decay in the electrochemical performance of high-loading electrodes are thoroughly discussed. Additionally, efficient solutions, such as doping and structural design, are summarized to address these challenges. Drawing from the current achievements, this review proposes future directions for development and identifies technological challenges that must be tackled to facilitate the commercialization of high-energy-density rechargeable batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,电化学超级电容器有望代表未来的储能装置技术。具体来说,优异的电化学性能,具有长的循环寿命,高能量,和功率密度被认为是商业应用的基本标准。在这里,我们构建了一种新型的复合钕钴氧化物封装的氧化石墨烯纳米复合材料(NCO/GO)通过一个简单和强大的方法为对称的超级电容器(SSC)装置。通过X射线衍射对制备的样品进行证券化,傅里叶变换红外光谱,拉曼,X射线光电子能谱,场发射扫描电子显微镜,高分辨率透射电子显微镜,和Brunauer-Emmett-Teller分析.合成的NCO/GO沉积在泡沫镍(NF)上,用作超级电容器电极(NCO/GO/NF),在1.0MKOH水性电解质中,在1Ag-1时表现出1080.92Fg-1的优异比电容(Cs)和出色的循环寿命,在10,000次循环后,〜89.42%的保留率。从与GO纳米片结合的NCO球形纳米颗粒的良好氧化还原活性和协同效应获得了杂化纳米复合电极的巨大电化学性能。此外,组装的SSC装置提供显著增强的功率密度(932.93Whkg-1)和能量密度(210.42mWhkg-1)。此外,SSC表现出优异的循环稳定性,~82.19%的容量保持超过10,000次充电/放电循环。值得注意的是,1.8V红色发光二极管(LED)可以通过串联连接的SSC点亮超过10分钟。因此,获得的结果表明,NCO/GO/NF//NCO/GO/NF对称器件具有用于高性能超级电容器系统的稳健且具有成本效益的电极材料。
    In recent years, electrochemical supercapacitors are expected to represent the future of energy storage device technology. Specifically, the excellent electrochemical performance with long cycle life, high energy, and power density is considered an essential criterion for commercial applications. Herein, we constructed a novel composite of neodymium cobalt oxide-encapsulated graphene oxide nanocomposite (NCO/GO) via a simple and robust method for a symmetric supercapacitor (SSC) device. The prepared samples were securitized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller analysis. The as-synthesized NCO/GO is deposited on nickel foam (NF) and used as a supercapacitor electrode (NCO/GO/NF), which exhibits superior specific capacitance (Cs) of 1080.92 F g-1 at 1 A g-1 and fantastic cycling life with ∼89.42% retention after 10,000 cycles at 10 A g-1 in 1.0 M KOH aqueous electrolyte. A tremendous electrochemical performance of the hybrid nanocomposite electrode is obtained from the good redox activity and synergistic effects of the NCO spherical-like nanoparticles combined with the GO nanosheets. Furthermore, the assembled SSC device delivers significantly enhanced power density (932.93 Wh kg-1) and energy density (210.42 mWh kg-1). Moreover, the SSCs exhibit excellent cycling stability with ∼82.19% capacity retaining over 10,000 charge/discharge cycles. Remarkably, a 1.8 V red light-emitting diode (LED) can be lit up for more than 10 min by series connection SSCs. Thus, the obtained results indicated that the NCO/GO/NF//NCO/GO/NF symmetric device has a robust and cost-effective electrode material for high-performance supercapacitor systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大容量储能装置正受到广泛的研究关注。然而,由于天气寒冷,这些设备的容量下降是其实际使用的巨大障碍。在这项研究中,提出了一种电化学自适应重构的基于CuxS/Cu(OH)2的对称储能装置。该装置在太阳辐射下提供令人满意的增强的光热容量。电化学重建处理后,形态结构重排,并引入大量活性位点,将CuxS组分部分转化为电化学活性的Cu(OH)2。所得的CuxS/Cu(OH)2电极在5mAcm-2下提供115.2Fcm-2的显著电容。更重要的是,其宽的工作电位范围和优越的光热转换能力赋予CuxS/Cu(OH)2作为全用光热增强电容电极的卓越性能。在太阳辐射下,CuxS/Cu(OH)2的表面温度仅在30s内升高了76.6°C,并且电容在低温下被提升到原始电容的230.4%。此外,组装的对称储能装置在15分钟的太阳辐射下还提供了2003%的光热容增强。
    Large-capacity energy storage devices are attracting widespread research attention. However, the decreased capacity of these devices due to cold weather is a huge obstacle for their practical use. In this study, an electrochemical self-adaptive reconstructed Cux S/Cu(OH)2 -based symmetric energy storage device is proposed. This device provides a satisfactorily enhanced photothermal capacity under solar irradiation. After electrochemical reconstruction treatment, the morphological structure is rearranged and the Cux S component is partially converted to electrochemically active Cu(OH)2 with the introduction of a large number of active sites. The resulting Cux S/Cu(OH)2 electrode provides a significant capacitance of 115.2 F cm-2 at 5 mA cm-2 . More importantly, its wide working potential range and superior photo-to-thermal conversion ability endow Cux S/Cu(OH)2 with superb performance as full-purpose photothermally enhanced capacitance electrodes. Under solar irradiation, the surface temperature of Cux S/Cu(OH)2 is elevated by 76.6 °C in only 30 s, and the capacitance is boosted to 230.4% of the original capacitance at a low temperature. Furthermore, the assembled symmetric energy storage device also delivers a photothermal capacitance enhancement of 200.3% under 15 min solar irradiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号