Endothelial cells

内皮细胞
  • 文章类型: Journal Article
    自身免疫性甲状腺疾病(AITD),如Graves病(GD)或桥本甲状腺炎(HT)是器官特异性疾病,涉及甲状腺组织不同成分之间的复杂相互作用。这里,我们使用空间转录组学来探索分子结构,甲状腺组织中存在的不同细胞的异质性和位置,包括甲状腺滤泡细胞(TFC),基质细胞如成纤维细胞,内皮细胞,和甲状腺浸润淋巴细胞.我们鉴定了AITD患者甲状腺样品中CD74和MIF表达上调的受损抗原呈递TFC。此外,我们发现结缔组织中两个主要的成纤维细胞亚群,包括ADIRF+肌成纤维细胞,主要富集在GD,和炎性成纤维细胞,富含HT患者。我们还证明了AITD中开窗PLVAP+血管的增加,尤其是在GD。我们的数据揭示了可能在AITD的发病机理中起作用的基质和甲状腺上皮细胞亚群。
    Autoimmune thyroid diseases (AITD) such as Graves\' disease (GD) or Hashimoto\'s thyroiditis (HT) are organ-specific diseases that involve complex interactions between distinct components of thyroid tissue. Here, we use spatial transcriptomics to explore the molecular architecture, heterogeneity and location of different cells present in the thyroid tissue, including thyroid follicular cells (TFCs), stromal cells such as fibroblasts, endothelial cells, and thyroid infiltrating lymphocytes. We identify damaged antigen-presenting TFCs with upregulated CD74 and MIF expression in thyroid samples from AITD patients. Furthermore, we discern two main fibroblast subpopulations in the connective tissue including ADIRF+ myofibroblasts, mainly enriched in GD, and inflammatory fibroblasts, enriched in HT patients. We also demonstrate an increase of fenestrated PLVAP+ vessels in AITD, especially in GD. Our data unveil stromal and thyroid epithelial cell subpopulations that could play a role in the pathogenesis of AITD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合成Notch(synNotch)受体是基因编码的,模块化合成受体,使哺乳动物细胞能够检测环境信号并通过激活用户规定的转录程序来响应。尽管一些材料已被修改以提供具有粗略空间控制的synNotch配体,在组织工程中的应用通常需要细胞外基质(ECM)衍生的支架和/或多个配体的更精细的空间定位。因此,我们在这里开发了一套激活synNotch受体的材料,用于材料到细胞信号传导的普遍工程。我们基因和化学融合功能性synNotch配体到ECM蛋白和ECM衍生材料。我们还通过在用两个synNotch配体微接触印刷的表面上用两个正交synNotch程序培养细胞,在四个不同的报告表型上产生具有微型精度的组织。最后,我们通过在用户定义的微模式中将成纤维细胞共转分化为骨骼肌或内皮细胞前体来展示其在组织工程中的应用。这些技术为空间控制哺乳动物组织中的细胞表型提供了途径。
    Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有丝分裂抑制剂是化疗中常用的药物,但是静脉注射后它们在全身的非特异性和不分青红皂白的分布会导致严重的副作用,尤其是心血管系统。在这种情况下,我们研究了广泛用于癌症治疗的有丝分裂抑制剂对内皮细胞的细胞毒性作用机制,如紫杉醇(也称为紫杉醇)和长春花生物碱,具有重大的实际意义。了解这些机制可以导致更有针对性和更少有害的癌症治疗。在抗癌治疗期间,将人主动脉内皮细胞(HAEC)与选定的有丝分裂抑制剂以接近人血浆中的浓度范围孵育。通过拉曼光谱成像的单细胞分析允许核的可视化,细胞质,和核周区域,以评估药物作用引起的生化变化。结果表明,核的形态和分子组成发生了显着变化。此外,观察到给定药物对细胞质的影响,这可能与其作用机制(MoA)有关。荧光显微镜测量支持的拉曼数据鉴定了DNA形式和蛋白质的独特变化,并揭示了药物诱导的内皮细胞炎症。有丝分裂抑制剂的主要目标是基于微管蛋白形成的损害和有丝分裂过程的抑制。虽然这三种药物都会影响微管并破坏细胞分裂,他们通过不同的MoA这样做,即,长春花生物碱抑制微管形成,而紫杉醇稳定微管。总而言之,这项工作展示了特定药物如何与内皮细胞相互作用。
    Mitotic inhibitors are drugs commonly used in chemotherapy, but their nonspecific and indiscriminate distribution throughout the body after intravenous administration can lead to serious side effects, particularly on the cardiovascular system. In this context, our investigation into the mechanism of the cytotoxic effects on endothelial cells of mitotic inhibitors widely used in cancer treatment, such as paclitaxel (also known as Taxol) and Vinca alkaloids, holds significant practical implications. Understanding these mechanisms can lead to more targeted and less harmful cancer treatments. Human aorta endothelial cells (HAECs) were incubated with selected mitotic inhibitors in a wide range of concentrations close to those in human plasma during anticancer therapy. The analysis of single cells imaged by Raman spectroscopy allowed for visualization of the nuclear, cytoplasmic, and perinuclear areas to assess biochemical changes induced by the drug\'s action. The results showed significant changes in the morphology and molecular composition of the nucleus. Moreover, an effect of a given drug on the cytoplasm was observed, which can be related to its mechanism of action (MoA). Raman data supported by fluorescence microscopy measurements identified unique changes in DNA form and proteins and revealed drug-induced inflammation of endothelial cells. The primary goal of mitotic inhibitors is based on the impairment of tubulin formation and the inhibition of the mitosis process. While all three drugs affect microtubules and disrupt cell division, they do so through different MoA, i.e., Vinca alkaloids inhibit microtubule formation, whereas paclitaxel stabilizes microtubules. To sum up, the work shows how a specific drug can interact with endothelial cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:内皮细胞(ECs)可以通过分泌分子赋予神经保护。本研究旨在探讨DNA甲基化是否有助于缺氧预处理(HPC)诱导ECs中神经保护基因的表达,并阐明HPCECs分泌分子可能是神经保护的分子机制之一。
    方法:在正常条件下培养人微血管内皮细胞-1(HMEC-1)(C),缺氧(H),和缺氧预处理(HPC),然后分离培养基(CM)。将与来自HMEC-1的分离的CM一起孵育的SY5Y细胞暴露于氧-葡萄糖剥夺(OGD)。DNA甲基转移酶(DNMT),全局甲基化水平,测量HMEC-1中miR-126及其启动子DNA甲基化水平。检测SY5Y中的细胞活力和细胞损伤。
    结果:HPC降低了HMEC-1中的DNMT水平和整体甲基化水平,并增加了miR-126的表达。CM从HPC处理的HMEC-1也减轻了SY5Y细胞损伤,而来自HMEC-1的过表达miR-126的CM可以减轻SY5Y在OGD条件下的损伤。
    结论:这些发现表明EC可能分泌分子,例如miR-126,通过调节DNMT的表达来执行HPC诱导的神经保护。
    BACKGROUND: Endothelial cells (ECs) can confer neuroprotection by secreting molecules. This study aimed to investigate whether DNA methylation contributes to the neuroprotective gene expression induced by hypoxia preconditioning (HPC) in ECs and to clarify that the secretion of molecules from HPC ECs may be one of the molecular mechanisms of neuroprotection.
    METHODS: Human microvascular endothelial cell-1 (HMEC-1) was cultured under normal conditions (C), hypoxia(H), and hypoxia preconditioning (HPC), followed by the isolation of culture medium (CM). SY5Y cell incubated with the isolated CM from HMEC-1 was exposed to oxygen-glucose deprivation (OGD). The DNA methyltransferases (DNMTs), global methylation level, miR-126 and its promotor DNA methylation level in HMEC-1 were measured. The cell viability and cell injury in SY5Y were detected.
    RESULTS: HPC decreased DNMTs level and global methylation level as well as increased miR-126 expression in HMEC-1. CM from HPC treated HMEC-1 also relieved SY5Y cell damage, while CM from HMEC-1 which over-expression of miR-126 can reduce injury in SY5Y under OGD condition.
    CONCLUSIONS: These findings indicate EC may secrete molecules, such as miR-126, to execute neuroprotection induced by HPC through regulating the expression of DNMTs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    缺氧是实体瘤的常见特征,并激活癌细胞中的适应机制,从而诱导治疗抵抗并对细胞代谢产生深远的影响。因此,缺氧是导致癌症进展的重要因素,并且与不良预后相关。肿瘤微环境中细胞的代谢改变支持肿瘤生长,在其他人中,抑制免疫反应和诱导血管生成。最近,细胞外囊泡(EV)已成为支持癌症进展的细胞间通讯的重要介质。以前,我们证明了缺氧癌细胞来源的EV的促血管生成特性。在这项研究中,我们研究了(缺氧)癌细胞来源的EV如何介导其作用。我们证明,源自癌症的EV通过增加mTOR和AMPKα的激活来调节受体细胞中的细胞代谢和蛋白质合成。使用代谢示踪剂实验,我们证明EV刺激内皮细胞的葡萄糖摄取以促进氨基酸合成,并刺激氨基酸摄取以增加蛋白质合成。尽管货物有改动,我们表明,源自癌症的EV对受体细胞的影响主要取决于产生EV的癌细胞类型,而不是其氧合状态。
    Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞基质阻抗传感已用于测量培养细胞层的跨上皮和跨内皮阻抗,并提取细胞参数,例如交界电阻,细胞-底物分离,和膜电容。以前,建立了包含两条跨细胞通路和一条旁细胞通路的三路细胞电极模型,用于MDCK细胞的阻抗分析.通过忽略横向细胞间隙的阻力,我们开发了一个简化的三路径模型,用于上皮细胞的阻抗分析,并以封闭形式求解模型方程。在31.25Hz至100kHz的频率范围内,从该简化的电池电极模型获得的计算阻抗值与从MDCK和OVCA429电池获得的实验数据非常吻合。我们还描述了每个模型拟合参数的变化如何影响MDCK电池层的电阻抗谱。通过假设连接电阻远小于通过横向细胞膜的比阻抗,简化的三路径模型简化为两路径模型,可用于内皮细胞和其他低连接电阻的圆盘形细胞的阻抗分析。测量的HUVEC和HaCaT细胞单层的阻抗谱与从两路模型计算的阻抗数据几乎一致。
    Electric cell-substrate impedance sensing has been used to measure transepithelial and transendothelial impedances of cultured cell layers and extract cell parameters such as junctional resistance, cell-substrate separation, and membrane capacitance. Previously, a three-path cell-electrode model comprising two transcellular pathways and one paracellular pathway was developed for the impedance analysis of MDCK cells. By ignoring the resistances of the lateral intercellular spaces, we develop a simplified three-path model for the impedance analysis of epithelial cells and solve the model equations in a closed form. The calculated impedance values obtained from this simplified cell-electrode model at frequencies ranging from 31.25 Hz to 100 kHz agree well with the experimental data obtained from MDCK and OVCA429 cells. We also describe how the change in each model-fitting parameter influences the electrical impedance spectra of MDCK cell layers. By assuming that the junctional resistance is much smaller than the specific impedance through the lateral cell membrane, the simplified three-path model reduces to a two-path model, which can be used for the impedance analysis of endothelial cells and other disk-shaped cells with low junctional resistances. The measured impedance spectra of HUVEC and HaCaT cell monolayers nearly coincide with the impedance data calculated from the two-path model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非酒精性脂肪性肝炎(NASH)和酒精性肝炎(AH)影响全球大部分普通人群。脂质代谢失调和酒精毒性通过肝星状细胞的激活和肝窦内皮细胞的毛细血管化驱动疾病进展。胶原沉积,随着正弦重塑,改变正弦曲线结构,导致肝脏炎症,门静脉高压症,肝功能衰竭,和其他并发症。努力开发NASH和AH的治疗方法。然而,这种治疗的成功是有限且不可预测的。我们报告了使用合理设计的蛋白质(ProAgio)诱导整合素αvβ3介导的细胞凋亡的NASH和AH治疗策略。整合素αvβ3在活化的肝星状细胞(αHSC)中高表达,血管生成内皮,和毛细血管化肝窦内皮细胞(caLSECs)。ProAgio诱导这些疾病驱动细胞的凋亡,因此减少胶原蛋白原纤维,反向正弦重塑,减少免疫细胞浸润。正弦重塑的逆转降低了白细胞粘附分子在LSECs上的表达,从而减少患病肝脏中的白细胞浸润/活化。我们的研究为NASH和AH治疗提供了一种新颖有效的方法。
    Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血管钙化(VC)是一种以血管平滑肌细胞(VSMC)中钙盐沉积为特征的心血管疾病。VC研究中使用的标准体外模型基于静态条件下的VSMC单一培养。尽管这些平台易于使用,不同细胞类型和动态条件之间缺乏相互作用,使得这些模型不足以研究血管病理生理学的关键方面.本研究旨在开发一种动态的内皮细胞-VSMC共培养物,该培养物可以更好地模拟体内血管微环境。双流生物反应器支持细胞相互作用并再现血流动力学。用补充有1.9mMNaH2PO4/Na2HPO4(1:1)的DMEM高葡萄糖钙化培养基刺激VSMC钙化7天。钙化,细胞活力,炎症介质,并对与VSMC分化相关的分子标志物(SIRT-1、TGFβ1)进行评价。我们的动态模型能够重现VSMC钙化和炎症,并证明与标准单一培养相比,VSMC钙化表型中涉及的效应子的调节差异。强调微环境在控制细胞行为中的重要性。因此,我们的平台代表了一个先进的系统来研究VC的病理生理机制,提供标准细胞单一培养不可用的信息。
    Vascular calcification (VC) is a cardiovascular disease characterized by calcium salt deposition in vascular smooth muscle cells (VSMCs). Standard in vitro models used in VC investigations are based on VSMC monocultures under static conditions. Although these platforms are easy to use, the absence of interactions between different cell types and dynamic conditions makes these models insufficient to study key aspects of vascular pathophysiology. The present study aimed to develop a dynamic endothelial cell-VSMC co-culture that better mimics the in vivo vascular microenvironment. A double-flow bioreactor supported cellular interactions and reproduced the blood flow dynamic. VSMC calcification was stimulated with a DMEM high glucose calcification medium supplemented with 1.9 mM NaH2PO4/Na2HPO4 (1:1) for 7 days. Calcification, cell viability, inflammatory mediators, and molecular markers (SIRT-1, TGFβ1) related to VSMC differentiation were evaluated. Our dynamic model was able to reproduce VSMC calcification and inflammation and evidenced differences in the modulation of effectors involved in the VSMC calcified phenotype compared with standard monocultures, highlighting the importance of the microenvironment in controlling cell behavior. Hence, our platform represents an advanced system to investigate the pathophysiologic mechanisms underlying VC, providing information not available with the standard cell monoculture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    内皮功能障碍往往先于心血管疾病的发展,包括心力衰竭.钠-葡萄糖协同转运蛋白2抑制剂(SGLT2is)的心脏保护益处可以通过它们对内皮的有利影响来解释。在这次审查中,我们总结了SGLT2is对内皮细胞的直接体外作用的现有知识,以及临床前模型中的系统观察。探索了四种推定机制:氧化应激,一氧化氮(NO)介导的途径,炎症,和内皮细胞的存活和增殖。体外和体内研究均表明,SGLT2通过增加内皮型一氧化氮合酶活性和减少ROS清除NO,对减弱活性氧(ROS)和增强NO生物利用度具有一类作用。此外,SGLT2通过在体内阻止粘附受体和促炎趋化因子的内皮表达来显著抑制炎症,表明内皮保护的另一类效应。然而,体外研究没有一致地显示SGLT2is对粘附分子表达的调节。虽然SGLT2在诱导细胞死亡的刺激下改善内皮细胞的存活,它们对血管生成的影响仍不确定。需要进一步的实验研究来准确确定这些机制在各种心血管并发症中的相互作用。包括心力衰竭和急性心肌梗死。
    Endothelial dysfunction often precedes the development of cardiovascular diseases, including heart failure. The cardioprotective benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) could be explained by their favorable impact on the endothelium. In this review, we summarize the current knowledge on the direct in vitro effects of SGLT2is on endothelial cells, as well as the systematic observations in preclinical models. Four putative mechanisms are explored: oxidative stress, nitric oxide (NO)-mediated pathways, inflammation, and endothelial cell survival and proliferation. Both in vitro and in vivo studies suggest that SGLT2is share a class effect on attenuating reactive oxygen species (ROS) and on enhancing the NO bioavailability by increasing endothelial nitric oxide synthase activity and by reducing NO scavenging by ROS. Moreover, SGLT2is significantly suppress inflammation by preventing endothelial expression of adhesion receptors and pro-inflammatory chemokines in vivo, indicating another class effect for endothelial protection. However, in vitro studies have not consistently shown regulation of adhesion molecule expression by SGLT2is. While SGLT2is improve endothelial cell survival under cell death-inducing stimuli, their impact on angiogenesis remains uncertain. Further experimental studies are required to accurately determine the interplay among these mechanisms in various cardiovascular complications, including heart failure and acute myocardial infarction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在太空飞行中暴露于微重力会引起与飞行后心血管疾病相关的内皮细胞功能改变。PIEZO1是调控内皮细胞功效的主要机械敏感离子通道。在这项研究中,我们使用二维clinostat研究了模拟微重力下PIEZO1在人脐静脉内皮细胞(HUVECs)上的表达及其调节机制。利用定量实时聚合酶链反应(qRT-PCR)和蛋白质印迹分析,我们观察到PIEZO1表达在模拟微重力下显著增加。此外,我们发现微重力通过增加PIEZO1的表达促进内皮细胞迁移.蛋白质组学分析强调了C-X-C趋化因子受体4型(CXCR4)作为HUVEC中PIEZO1的主要靶分子的重要性。CXCR4蛋白水平随着模拟微重力而升高,随着PIEZO1敲低而降低。机制研究表明,PIEZO1通过Ca2流入增强CXCR4的表达。此外,CXCR4在模拟微重力条件下可促进内皮细胞迁移。一起来看,这些结果表明,响应模拟微重力的PIEZO1上调调节内皮细胞迁移,这是由于通过Ca2+内流增强CXCR4的表达。
    Exposure to microgravity during spaceflight induces the alterations in endothelial cell function associated with post-flight cardiovascular deconditioning. PIEZO1 is a major mechanosensitive ion channel that regulates endothelial cell function. In this study, we used a two-dimensional clinostat to investigate the expression of PIEZO1 and its regulatory mechanism on human umbilical vein endothelial cells (HUVECs) under simulated microgravity. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, we observed that PIEZO1 expression was significantly increased in response to simulated microgravity. Moreover, we found microgravity promoted endothelial cells migration by increasing expression of PIEZO1. Proteomics analysis highlighted the importance of C-X-C chemokine receptor type 4(CXCR4) as a main target molecule of PIEZO1 in HUVECs. CXCR4 protein level was increased with simulated microgravity and decreased with PIEZO1 knock down. The mechanistic study showed that PIEZO1 enhances CXCR4 expression via Ca2+ influx. In addition, CXCR4 could promote endothelial cell migration under simulated microgravity. Taken together, these results suggest that the upregulation of PIEZO1 in response to simulated microgravity regulates endothelial cell migration due to enhancing CXCR4 expression via Ca2+ influx.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号