Endocardial cushions

  • 文章类型: Journal Article
    三尖瓣闭锁(TA)是一种罕见的先天性心脏病,表现为完全没有右房室瓣。由于家族性和/或孤立性TA病例很少,对导致这种情况的潜在遗传异常知之甚少。在探索性研究中确定了潜在的负责染色体异常,包括22q11、4q31、8p23和3p以及三体13和18的缺失。并行,潜在的罪魁祸首基因包括ZFPM2,HEY2,NFATC1,NKX2-5,MYH6和KLF13基因。本章的目的是揭示可能参与人类TA发病机理的遗传成分。在TA病例中,表型和基因型的巨大变异性表明存在一个涉及许多组件的遗传网络。
    Tricuspid atresia (TA) is a rare congenital heart condition that presents with a complete absence of the right atrioventricular valve. Because of the rarity of familial and/or isolated cases of TA, little is known about the potential genetic abnormalities contributing to this condition. Potential responsible chromosomal abnormalities were identified in exploratory studies and include deletions in 22q11, 4q31, 8p23, and 3p as well as trisomies 13 and 18. In parallel, potential culprit genes include the ZFPM2, HEY2, NFATC1, NKX2-5, MYH6, and KLF13 genes. The aim of this chapter is to expose the genetic components that are potentially involved in the pathogenesis of TA in humans. The large variability in phenotypes and genotypes among cases of TA suggests a genetic network that involves many components yet to be unraveled.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管在小鼠中发现了几种大动脉转位发生的潜在基因,在新生儿中诊断出最常见的紫红色先天性心脏病的人类遗传学仍然未知。流出道的发育是一个复杂的过程,涉及心脏发育的主要基因,作用于来自前第二心脏场的心肌细胞,和心内膜垫的间充质细胞。这些基因,转录因子的编码,彼此互动,以及它们的差异表达决定了表型的严重程度。必须对解剖表型进行精确描述,以更好地理解负责大动脉转位的复杂机制。
    Although several genes underlying occurrence of transposition of the great arteries have been found in the mouse, human genetics of the most frequent cyanotic congenital heart defect diagnosed in neonates is still largely unknown. Development of the outflow tract is a complex process which involves the major genes of cardiac development, acting on myocardial cells from the anterior second heart field, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. A precise description of the anatomic phenotypes is mandatory to achieve a better comprehension of the complex mechanisms responsible for transposition of the great arteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    房室间隔缺损(AVSD)由许多心脏畸形组成,这些畸形是由心内膜垫的异常发育引起的。AVSD发生在1000例活产中的0.19例,占先天性心脏缺陷的4-5%。AVSD可以分为不完整(或部分)或完整,中间或过渡。
    Atrioventricular septal defects (AVSDs) consist of a number of cardiac malformations that result from abnormal development of the endocardial cushions. AVSDs occur in 0.19 of 1000 live births and constitute 4-5 % of congenital heart defects. AVSDs can be categorized as incomplete (or partial) or complete, and intermediate or transitional.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    室间隔是一个复杂的过程,涉及心脏发育的主要基因,作用于第一和第二心脏区域的心肌细胞,和心内膜垫的间充质细胞。这些基因,转录因子的编码,彼此互动,以及它们的差异表达决定了表型的严重程度。在这一章中,我们将描述正常心脏中室间隔的形成,以及导致室间隔缺损的四种主要解剖类型的分子机制:出口,入口,肌肉,和中央膜周,由于室间隔不同部位的发育失败。动物模型实验,特别是转基因小鼠系,帮助我们破译了室间隔的分子决定因素。然而,必须对这些模型中发现的解剖表型进行精确描述,才能更好地理解导致各种类型VSD的复杂机制.
    Ventricular septation is a complex process which involves the major genes of cardiac development, acting on myocardial cells from first and second heart fields, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. In this chapter, we will describe the formation of the ventricular septum in the normal heart, as well as the molecular mechanisms leading to the four main anatomic types of ventricular septal defects: outlet, inlet, muscular, and central perimembranous, resulting from failure of development of the different parts of the ventricular septum. Experiments on animal models, particularly transgenic mouse lines, have helped us to decipher the molecular determinants of ventricular septation. However, a precise description of the anatomic phenotypes found in these models is mandatory to achieve a better comprehension of the complex mechanisms responsible for the various types of VSDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    房间隔缺损的临床表现和处理的相对简单性掩盖了发育发病机理的复杂性。这里,我们描述了房间隔的解剖发育和静脉回流到心房腔。实验模型表明,突变和自然发生的遗传变异如何影响发育步骤,从而导致椭圆形窝内的缺陷,所谓的secundum缺陷,或其他心房通信,如静脉窦缺损或原孔缺损。
    The relative simplicity of the clinical presentation and management of an atrial septal defect belies the complexity of the developmental pathogenesis. Here, we describe the anatomic development of the atrial septum and the venous return to the atrial chambers. Experimental models suggest how mutations and naturally occurring genetic variation could affect developmental steps to cause a defect within the oval fossa, the so-called secundum defect, or other interatrial communications, such as the sinus venosus defect or ostium primum defect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心脏发育的重大事件,包括早期心脏形成,腔室形态发生和分隔,传导系统和冠状动脉发育,简要回顾了通常用于研究心脏发育和先天性心脏缺陷(CHD)模型的动物物种的简短介绍。
    The major events of cardiac development, including early heart formation, chamber morphogenesis and septation, and conduction system and coronary artery development, are briefly reviewed together with a short introduction to the animal species commonly used to study heart development and model congenital heart defects (CHDs).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    患有唐氏综合症(DS)的人患先天性心脏病(CHD)的可能性是典型人群Freeman等人的2000倍。在AmJMedGenet80:213-217(1998)中。在具有DS特征的个体中,大多数CHD涉及房室(AV)管,包括瓣膜和心房或室间隔。VI型胶原蛋白(COLVI)是发展中的隔膜和心内膜垫的主要结构成分,编码COLVI的三个基因中的两个位于人类21号染色体上,并在唐氏综合症中上调(vonKaisenberg等。在ObstetGynecol91:319-323,1998;Gittenberger-DeGroot等人。在AnatomRecA部分275:1109-1116,2023年)。
    为了研究COLVI剂量对21三体性心肌细胞的影响,将来自DS个体和年龄和性别匹配对照的诱导多能干细胞(iPSC)分化成心肌细胞(iPSC-CM)并铺在不同浓度的COLVI上。
    实时定量PCR显示,与对照iPSC-CM相比,DSiPSC-CM系的心脏特异性基因表达降低。不出所料,DSiPSC-CM在21号染色体上的基因表达增加,包括COL6A1,COL6A2,以及不位于21号染色体上的基因,即COL6A3,HAS2和HYAL2。我们发现,较高浓度的COLVI导致DSiPSC-CM的增殖和迁移减少,但不能控制iPSC-CM。
    这些结果表明,DS中COLVI表达的增加可能会导致由于较低的细胞增殖和迁移而引起的心内膜垫的较低迁移驱动的伸长,可能导致DS人群CHD的高发病率。
    在线版本包含补充材料,可在10.1007/s12195-023-00791-x获得。
    UNASSIGNED: Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213-217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319-323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109-1116, 2023).
    UNASSIGNED: To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI.
    UNASSIGNED: Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including COL6A1, COL6A2, as well as genes not located on chromosome 21, namely COL6A3, HAS2 and HYAL2. We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM.
    UNASSIGNED: These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s12195-023-00791-x.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    创造一个功能3D生物打印的人类心脏仍然具有挑战性,主要是由于缺乏一些关键的心脏细胞类型,包括房室管(AVC)心肌细胞,这对于减缓心房和心室之间的电脉冲至关重要。通过利用单细胞RNA测序分析和3D生物打印技术,我们发现经典Wnt信号的阶段特异性激活产生了源自人多能干细胞的功能性AVC心肌细胞。这些心肌细胞表现出AVC心肌细胞的形态学特征和表达分子标志物,包括转录因子TBX2和MSX2。当在预制的心脏组织中生物打印时,这些心肌细胞成功地延迟了电脉冲,证明它们在体外作为AVC心肌细胞发挥作用的能力。因此,这些发现不仅将经典Wnt信号识别为AVC心肌细胞体外分化的关键调节因子,但是,更重要的是,为功能性人类心脏的生物制造提供了关键的细胞来源。
    The creation of a functional 3D bioprinted human heart remains challenging, largely due to the lack of some crucial cardiac cell types, including the atrioventricular canal (AVC) cardiomyocytes, which are essential to slow down the electrical impulse between the atrium and ventricle. By utilizing single-cell RNA sequencing analysis and a 3D bioprinting technology, we discover that stage-specific activation of canonical Wnt signaling creates functional AVC cardiomyocytes derived from human pluripotent stem cells. These cardiomyocytes display morphological characteristics and express molecular markers of AVC cardiomyocytes, including transcription factors TBX2 and MSX2. When bioprinted in prefabricated cardiac tissues, these cardiomyocytes successfully delay the electrical impulse, demonstrating their capability of functioning as the AVC cardiomyocytes in vitro. Thus, these findings not only identify canonical Wnt signaling as a key regulator of the AVC cardiomyocyte differentiation in vitro, but, more importantly, provide a critical cellular source for the biofabrication of a functional human heart.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心内膜垫的形成对于心脏瓣膜发育和心腔分离至关重要。异常的心内膜垫形成通常会导致先天性心脏缺陷。已知β-连环蛋白是心内膜垫形成所必需的;然而,潜在的细胞和分子机制仍未完全了解。这里,我们发现,由于细胞增殖减少和细胞迁移受损,小鼠内皮特异性β-catenin缺失导致增生性心内膜垫的形成.通过使用β-连环蛋白DM等位基因,其中β-连环蛋白的转录功能被选择性破坏,我们进一步揭示了β-catenin通过其转录和非转录功能调节细胞增殖和迁移,分别。在分子水平上,β-catenin的缺失导致细胞周期抑制剂p21在缓冲心内膜和间充质细胞中的表达增加。HUVEC和猪主动脉瓣间质细胞的体外抢救实验证实β-catenin通过抑制p21促进细胞增殖。此外,一个明智的阴性观察是β-catenin对于心内膜至间充质的命运改变是不必要的。一起来看,我们的研究结果表明,β-catenin对于细胞增殖和迁移至关重要,但对于心内膜细胞在心内膜垫形成过程中获得间充质命运是不必要的。机械上,β-连环蛋白通过抑制p21促进细胞增殖。这些发现揭示了β-连环蛋白在先天性心脏缺陷病因中的潜在作用。
    Endocardial cushion formation is essential for heart valve development and heart chamber separation. Abnormal endocardial cushion formation often causes congenital heart defects. β-Catenin is known to be essential for endocardial cushion formation; however, the underlying cellular and molecular mechanisms remain incompletely understood. Here, we show that endothelial-specific deletion of β-catenin in mice resulted in formation of hypoplastic endocardial cushions due to reduced cell proliferation and impaired cell migration. By using a β-catenin DM allele in which the transcriptional function of β-catenin is selectively disrupted, we further reveal that β-catenin regulated cell proliferation and migration through its transcriptional and non-transcriptional function, respectively. At the molecular level, loss of β-catenin resulted in increased expression of cell cycle inhibitor p21 in cushion endocardial and mesenchymal cells in vivo. In vitro rescue experiments with HUVECs and pig aortic valve interstitial cells confirmed that β-catenin promoted cell proliferation by suppressing p21. In addition, one savvy negative observation is that β-catenin was dispensable for endocardial-to-mesenchymal fate change. Taken together, our findings demonstrate that β-catenin is essential for cell proliferation and migration but dispensable for endocardial cells to gain mesenchymal fate during endocardial cushion formation. Mechanistically, β-catenin promotes cell proliferation by suppressing p21. These findings inform the potential role of β-catenin in the etiology of congenital heart defects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号