Electron tomography

电子层析成像
  • 文章类型: Journal Article
    冷冻的电子层析成像,水合样品允许嵌入复杂环境中的大分子复合物的结构测定。前提是目标复合物可以在嘈杂的环境中定位,三维层析成像重建,对这些分子的多个实例的图像进行平均可以导致具有足够分辨率的结构,以进行从头原子建模。尽管许多研究小组为这些任务贡献了图像处理工具,缺乏标准化和互操作性是该领域新手的障碍。这里,我们在RELION-5中提供了用于电子层析成像数据的图像处理管道,其功能范围从导入未处理的电影到在最终地图中自动构建原子模型。我们对描述管道步骤的元数据项的明确定义已设计用于与其他软件工具的互操作性,并提供了进一步标准化的框架。
    Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three-dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION-5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高压冷冻/冷冻替代已用于保存生物样品以进行超微结构研究,而不是化学固定。对于大多数植物样品,含水量太高,在冷冻固定过程中不能适当保存。此外,细胞壁是防止树脂取代水的屏障。在这一章中,我们将根据我们常规使用的方法在透射电子显微镜和电子断层扫描中检查拟南芥种子,讨论改进的高压冷冻和后续处理方案。
    High-pressure freezing/freeze substitution has been used to preserve biological samples for ultrastructure study instead of chemical fixation. For most plant samples, the water content is too high and cannot be properly preserved during cryofixation. Additionally, the cell wall is a barrier that prevents the substitution of water with the resin. In this chapter, we will discuss modified high-pressure freezing and subsequent processing protocols based on our routinely used methodology for examining Arabidopsis seeds in transmission electron microscopy and electron tomography.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物细胞中的液泡是具有独特特征的最突出的细胞器,包括裂解功能,蛋白质和糖的储存,细胞体积平衡,和防御反应。尽管它们的主要尺寸和功能多功能性,植物中液泡的性质和生物发生本身仍然难以捉摸,已经提出了几种模型。最近,我们使用全细胞3D电子断层扫描(ET)技术以纳米分辨率研究了液泡的形成和分布,并证明了小液泡来自多囊体成熟和融合。良好的样品制备是获得高质量电子层析成像图像的关键步骤。在这一章中,我们提供了拟南芥根细胞中高分辨率ET的详细样品制备方法,包括高压冷冻,随后的冷冻替代固定,嵌入,和连续切片。
    Vacuoles in plant cells are the most prominent organelles that harbor distinctive features, including lytic function, storage of proteins and sugars, balance of cell volume, and defense responses. Despite their dominant size and functional versatility, the nature and biogenesis of vacuoles in plants per se remain elusive and several models have been proposed. Recently, we used the whole-cell 3D electron tomography (ET) technique to study vacuole formation and distribution at nanometer resolution and demonstrated that small vacuoles are derived from multivesicular body maturation and fusion. Good sample preparation is a critical step to get high-quality electron tomography images. In this chapter, we provide detailed sample preparation methods for high-resolution ET in Arabidopsis thaliana root cells, including high-pressure freezing, subsequent freeze-substitution fixation, embedding, and serial sectioning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微塑料和纳米塑料已经成为一个新兴的全球关注,对植物有危险的影响,动物,和人类健康。它们的小尺寸使它们更容易传播到各种生态系统并进入食物链;它们已经广泛存在于水性环境和水生生物中,甚至在人类中发现。许多研究已经进入了解微/纳米塑料来源和环境命运,但是了解它们退化的工作很少。光催化降解是一种有前途的绿色技术,它使用可见光或紫外光与光催化剂结合降解塑料颗粒。在完全退化的同时,将塑料转化为小分子,通常是目标,部分降解更为常见。我们使用多种成像技术检查了降解前后的微米级聚乙烯(直径125-150µm)和纳米级聚苯乙烯(直径〜300nm)球体,尤其是扫描电子显微镜和电子层析成像.电子层析成像能够对纳米塑料的外部和内部进行3D成像,使我们能够在聚集体内和退化的球体内观察,我们在退化后发现了潜在的开放内部结构。这些结构可能是由于不同塑料类型之间的降解和聚集行为的差异。我们的工作发现,聚乙烯微塑料通常会破裂成尖锐的碎片,而聚苯乙烯纳米塑料经常碎裂成更光滑的,更弯曲的形状。这些和其他差异,以及内部和3D表面图像,提供有关聚乙烯微塑料和聚苯乙烯纳米塑料在降解时的结构和聚集如何变化的新细节,这可能会影响如何收集或进一步处理所产生的磨损颗粒。
    Microplastics (MPs) and nanoplastics have been an emerging global concern, with hazardous effects on plant, animal, and human health. Their small size makes it easier for them to spread to various ecosystems and enter the food chain; they are already widely found in aqueous environments and within aquatic life, and have even been found within humans. Much research has gone into understanding micro-/nanoplastic sources and environmental fate, but less work has been done to understand their degradation. Photocatalytic degradation is a promising green technique that uses visible or ultraviolet light in combination with photocatalyst to degrade plastic particles. While complete degradation, reducing plastics to small molecules, is often the goal, partial degradation is more common. We examined microscale polyethylene (PE) (125-150µm in diameter) and nanoscale polystyrene (PS) (∼300 nm in diameter) spheres both before and after degradation using multiple imaging techniques, especially electron tomography in addition to conventional electron microscopy. Electron tomography is able to image the 3D exterior and interior of the nanoplastics, enabling us to observe within aggregates and inside degraded spheres, where we found potentially open interior structures after degradation. These structures may result from differences in degradation and aggregation behavior between the different plastic types, with our work finding that PE MPs typically cracked into sharp fragments, while PS nanoplastics often fragmented into smoother, more curved shapes. These and other differences, along with interior and 3D surface images, provide new details on how the structure and aggregation of PE MPs and PS nanoplastics changes when degraded, which could influence how the resulting worn particles are collected or treated further.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基孔肯雅病毒(CHIKV)是一种蚊子传播的病原体,可导致人类急性肌肉骨骼疾病。病毒RNA基因组的复制发生在专门的膜复制细胞器(RO)或球体中,其中含有病毒复制复合体。最初由RNA合成相关的质膜变形产生,甲病毒RO通常被快速内吞以产生I型细胞病变液泡(CPV-I),从中挤出新生的RNA用于细胞质翻译。相比之下,CHIKVRO内在化程度很低,在感染后期提出了他们的命运和功能问题。这里,使用原位低温电子显微镜方法,我们调查了CHIKVRO的结果和感染的人类细胞中相关的复制机制。我们证明了CHIKVRO在质膜上的后期持续存在,在球颈处有一个冠状的蛋白质复合物,类似于最近解决的复制复合物。这些隔室出乎意料的异质和大直径表明,这些细胞器的动态生长超出了单个RNA基因组的复制。周围细胞质区域的超微结构分析支持长出的CHIKVRO在病毒RNA合成中保持动态活性并输出到细胞胞质溶胶以进行蛋白质翻译。有趣的是,具有均匀直径的稀有RO也在CPV-I中被少量内在化,接近未知功能的蜂窝状排列,在未感染的对照中不存在,从而暗示了这种内在化的时间调节。总之,这项研究揭示了感染细胞中CHIKVRO的动态模式和与细胞膜界面相关的病毒复制。重要意义基孔肯雅病毒(CHIKV)是一种正链RNA病毒,其基因组复制需要专门的膜复制细胞器(RO)。我们对这个病毒周期阶段的了解仍然不完整,特别是关于感染细胞中CHIKVRO的命运和功能动力学。这里,我们表明,CHIKVRO维持在质膜超过第一个病毒周期,继续生长并在病毒RNA复制和向细胞胞质溶胶的输出中动态活跃,其中翻译发生在RO附近。这与细胞质液泡内化过程中RO的均匀直径相反,通常与功能未知的蜂窝状排列有关,提出了一种调节机制。这项研究为人类细胞中CHIKVRO的动力学和命运提供了新的思路,因此,我们对基孔肯雅病毒周期的理解。
    Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质和信使RNA的核质转运分析一直是先进的微观方法的重点。最近,有可能使用电子显微镜和光学显微镜来识别和观察通过核孔复合体的单个前核糖体颗粒.在这次审查中,我们专注于核糖体前颗粒在细胞核中的运输,以及它们通过毛孔的方式。
    The analysis of nucleocytoplasmic transport of proteins and messenger RNA has been the focus of advanced microscopic approaches. Recently, it has been possible to identify and visualize individual pre-ribosomal particles on their way through the nuclear pore complex using both electron and light microscopy. In this review, we focused on the transport of pre-ribosomal particles in the nucleus on their way to and through the pores.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    亨廷顿病(HD)是一种遗传性神经退行性疾病,由亨廷顿蛋白编码序列中的CAG重复序列扩大引起。最初,它主要影响纹状体的中等大小的多刺神经元(MSSN)。仍然没有有效的治疗方法,从而敦促识别潜在的治疗靶点。虽然HD中存在线粒体结构改变的证据,以前的研究主要采用2D方法,并且在严格的自然大脑环境之外进行。在这项研究中,我们采用了一种新的多尺度方法对HD小鼠模型的线粒体紊乱进行了全面的3D原位结构分析。我们利用最先进的3D成像技术在最佳结构条件下研究了脑组织内的MSSN,特别是FIB/SEM,用于神经元躯体的完整成像和电子断层扫描,用于详细的形态学检查,和基于图像处理的定量分析。我们的发现表明,在HD中线粒体网络向碎片化的破坏。交错的网络,在健康条件下观察到的细长线粒体转化为孤立的,肿胀和短的实体,内部的cristae混乱,空腔和异常大的基质颗粒。
    Huntington\'s disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    物理性质预测和合成过程优化是材料信息学的关键目标。在这项研究中,我们提出了一种机器学习方法,利用岭回归来预测燃料电池电极表面的氧渗透率,并确定最佳工艺温度。这些预测是基于从使用透射电子显微镜(TEM)捕获的断层摄影图像得出的持久性图。通过机器学习分析Pt/CeO2纳米复合材料中存在的复杂结构,我们发现,考虑不同结构元素的l2正则化比l1正则化(稀疏建模)更合适。值得注意的是,我们的模型成功地捕获了氧气渗透率的活化能,这种现象不能完全用贝蒂数的几何特征来解释,正如先前的研究所证明的那样。岭回归系数与持久性图之间的对应关系揭示了CeO2的局部和三维结构的形成过程及其对指数前因子和活化能的贡献。该分析有助于确定实现最佳结构和准确预测物理性质所需的退火温度。
    Physical property prediction and synthesis process optimization are key targets in material informatics. In this study, we propose a machine learning approach that utilizes ridge regression to predict the oxygen permeability at fuel cell electrode surfaces and determine the optimal process temperature. These predictions are based on a persistence diagram derived from tomographic images captured using transmission electron microscopy (TEM). Through machine learning analysis of the complex structures present in the Pt/CeO2 nanocomposites, we discovered that l2 regularization considering diverse structural elements is more appropriate than l1 regularization (sparse modeling). Notably, our model successfully captured the activation energy of oxygen permeability, a phenomenon that could not be solely explained by the geometric feature of the Betti numbers, as demonstrated in a previous study. The correspondence between the ridge regression coefficient and persistence diagram revealed the formation process of the local and three-dimensional structures of CeO2 and their contributions to pre-exponential factor and activation energies. This analysis facilitated the determination of the annealing temperature required to achieve the optimal structure and accurately predict the physical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞是动态机器,不断改变其结构以适应和响应细胞外和细胞内刺激。在细胞内部以纳米级分辨率解密动态过程对于机械理解至关重要。这里,我们提出了一个方案,该方案能够在接近天然条件下以高时空分辨率对细胞内结构的动态变化进行原位研究。重要的是,细胞生长,运输,并在室内成像,其中环境条件如温度和气体(例如,二氧化碳或氧气)浓度可以控制。我们证明了该方案来量化在培养的哺乳动物细胞的细胞周期期间发生的超微结构变化。环境控制系统开辟了将这种方法应用于初级细胞的可能性,组织,和类器官通过调节环境条件。
    Cells are dynamic machines that continuously change their architecture to adapt and respond to extracellular and intracellular stimuli. Deciphering dynamic processes with nanometer-scale resolution inside cells is critical for mechanistic understanding. Here, we present a protocol that enables the in situ study of dynamic changes in intracellular structures under close-to-native conditions at high spatiotemporal resolution. Importantly, the cells are grown, transported, and imaged in a chamber in which environmental conditions such as temperature and gas (e.g., carbon dioxide or oxygen) concentration can be controlled. We demonstrate this protocol to quantify ultrastructural changes that occur during the cell cycle of cultured mammalian cells. The environment control system opens up the possibility of applying this method to primary cells, tissues, and organoids by adjusting environmental conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手性是手性纳米晶体的基本属性,对它们的属性有重大影响。在化学生长过程中,纳米晶体的手性通常通过选择参与不对称生长的手性分子的相应对映体来调节,通常被称为手性诱导剂。我们报告说,即使使用相同的手性诱导物对映异构体,通过使用具有单晶或五核结构的Au纳米棒种子,可以逆转手性金纳米晶体的手性。这种效应适用于由氨基酸(例如胱氨酸)和手性胶束(包含十六烷基三甲基氯化铵和1,1'-联萘-2,2-二胺)诱导的手性生长。尽管辨别L-胱氨酸定向粒子的形态惯用性具有挑战性,即使使用电子层析成像,两例均显示相反符号的圆二色性带,具有几乎镜像的手性胶束定向生长特征,伴随着倒手的准螺旋皱纹。这些结果扩展了手性生长工具箱,其效果可能被用来产生许多具有可调光学特性的有趣形态。
    Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for L-cystine-directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle-directed growth, along with quasi-helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号