Electron Transport Complex III

电子传输配合物 III
  • 文章类型: Journal Article
    有氧生命由膜结合的氧化还原酶提供动力,这些酶将电子穿梭到氧气中,并将质子转移到生物膜上。结构研究表明,这些能量转导酶作为高阶超复合物,但他们的功能作用仍然知之甚少和高度争论。在这里,我们解析了来自耻垢分枝杆菌的0.7MDaIII2IV2专性超复合物的功能动力学,结核分枝杆菌的近亲,结核病的病原体。通过结合计算,生物化学,和高分辨率(2.3贝达)低温电子显微镜实验,我们展示了分枝杆菌超级复合物如何催化从其甲萘酚氧化位点到双核活性位点的长距离电荷转移以进行氧还原。我们的数据揭示了负责电荷转移反应的质子和电子途径,醌催化的机理原理,以及独特的分子适应,水分子,和脂质相互作用使质子耦合电子转移(PCET)反应成为可能。我们的综合发现提供了分枝杆菌超级复合物的机械蓝图,并为开发针对病原菌的药物奠定了基础。
    Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    硫化氢(H2S)最近被认为是一种重要的气体递质,在各种物种中具有多种生理效应。先前的研究表明,H2S缓解了热诱导的灵芝酸(GA)的生物合成,灵芝的重要质量指标。然而,对灵芝中H2S的生理效应和分子机制的全面了解仍未被探索。在这项研究中,我们发现热处理降低了灵芝的线粒体膜电位(MMP)和线粒体DNA拷贝数(mtDNAcn)。通过药理学和遗传学手段增加细胞内H2S浓度增加MMP水平,mtDNAcn,热处理下的耗氧率水平和ATP含量,提示H2S在减轻灵芝热引起的线粒体损伤中的作用。进一步的结果表明,H2S激活硫化物-醌氧化还原酶(SQR)和复合物III(ComIII),从而在热应激下维持灵芝线粒体稳态。此外,在热应激下,SQR还介导了H2S对GAs生物合成的负调控。此外,在热应激下,灵芝的SQR可能被过硫化。因此,我们的研究揭示了热胁迫下灵草H2S信号的新生理功能和分子机制,对研究微生物的环境反应具有广泛的意义。
    Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人AAA-ATPaseBcs1L将完全组装的Rieske铁硫蛋白(ISP)前体转运穿过线粒体内膜,使呼吸复合体III组装。折叠的底物到底是如何与Bcs1L结合和释放的,目前还不清楚,关于Bcs1L的亚基在移动蛋白质货物时是否顺序或一致水解ATP,一直存在争议。这里,在存在或不存在ISP底物的情况下,我们在活性ATP水解过程中通过cryo-EM捕获了Bcs1L构象。与AAA蛋白在底物易位中广泛使用的穿线机制相反,Bcs1L的亚基在ATP和ADP构象之间均匀交替,没有可检测的中间体,共存的核苷酸状态,表明子单元一致行动。我们进一步表明,当ISP的亚基都处于ADP结合状态时,ISP可以被Bcs1捕获,我们建议以apo形式发布。
    The human AAA-ATPase Bcs1L translocates the fully assembled Rieske iron-sulfur protein (ISP) precursor across the mitochondrial inner membrane, enabling respiratory Complex III assembly. Exactly how the folded substrate is bound to and released from Bcs1L has been unclear, and there has been ongoing debate as to whether subunits of Bcs1L act in sequence or in unison hydrolyzing ATP when moving the protein cargo. Here, we captured Bcs1L conformations by cryo-EM during active ATP hydrolysis in the presence or absence of ISP substrate. In contrast to the threading mechanism widely employed by AAA proteins in substrate translocation, subunits of Bcs1L alternate uniformly between ATP and ADP conformations without detectable intermediates that have different, co-existing nucleotide states, indicating that the subunits act in concert. We further show that the ISP can be trapped by Bcs1 when its subunits are all in the ADP-bound state, which we propose to be released in the apo form.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过全面的分子对接研究,一系列独特的萘醌簇状氮杂环丁酮支架与分枝杆菌Cytbc1复合物具有良好的结合亲和力,选择杀死耐多药结核分枝杆菌(MDR-Mtb)的药物靶标。来自系列2、2a、2c,2g,2h,2j,显示了对MtbH37Rv和MDR临床分离株的显着体外抗结核活性。Further,这些化合物与异烟肼和RIF组合的协同研究表明,浓度为0.39μg/mL的化合物2a具有有效的杀菌作用。剩下的(2c,2g,2h,和2j)为0.78μg/mL。通过化学应激测定和蛋白质组谱分析对机制研究进行了探索,揭示了电子传递链和Cytbc1抑制途径的关键蛋白的下调。代谢组学证实了这些蛋白质组的发现,并加深了对潜在机制的进一步理解。值得注意的是,体外和体内动物毒性研究表明毒性最小,因此强调了这些化合物与RIF和INH联合作为有前途的抗结核药的潜力。这些活性化合物遵守Lipinski的“五”法则,表明这些化合物对药物开发的适用性。分子NQ02、2a、和2小时,已获得专利(已发布202141033473)。
    Through a comprehensive molecular docking study, a unique series of naphthoquinones clubbed azetidinone scaffolds was arrived with promising binding affinity to Mycobacterial Cytbc1 complex, a drug target chosen to kill multi-drug resistant Mycobacterium tuberculosis (MDR-Mtb). Five compounds from series-2, 2a, 2c, 2g, 2h, and 2j, showcased significant in vitro anti-tubercular activities against Mtb H37Rv and MDR clinical isolates. Further, synergistic studies of these compounds in combination with INH and RIF revealed a potent bactericidal effect of compound 2a at concentration of 0.39 μg/mL, and remaining (2c, 2g, 2h, and 2j) at 0.78 μg/mL. Exploration into the mechanism study through chemo-stress assay and proteome profiling uncovered the down-regulation of key proteins of electron-transport chain and Cytbc1 inhibition pathway. Metabolomics corroborated these proteome findings, and heightened further understanding of the underlying mechanism. Notably, in vitro and in vivo animal toxicity studies demonstrated minimal toxicity, thus underscoring the potential of these compounds as promising anti-TB agents in combination with RIF and INH. These active compounds adhered to Lipinski\'s Rule of Five, indicating the suitability of these compounds for drug development. Particular significance of molecules NQ02, 2a, and 2h, which have been patented (Published 202141033473).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Rieske加氧酶(RO)是一种多样化的金属酶类,在生物转化和合成应用中具有不断增长的潜力。我们假设RO仍然没有得到充分利用,因为它们不稳定。对苯二甲酸双加氧酶(TPADOPDBID7Q05)是一种在结构上表征的异六聚体α3β3RO,与其同源还原酶(TPARED),催化细菌聚对苯二甲酸乙二醇酯塑料生物转化的第一个细胞内步骤。这里,我们表明,异源表达的TPADO/TPARED系统在其最佳pH和温度下仅显示约300个总周转。我们通过生化和生物物理方法的结合研究了系统的热稳定性和TPADO的展开途径。对于单体TPARED,系统的活性受到39.9°C的熔化温度(Tm)的热限制,而TPADO的独立Tm为50.8°C。差示扫描量热法揭示了TPADO的两步热分解途径,每个步骤的Tm值为47.6和58.0°C(ΔH分别为210和509kcalmol-1)。温度依赖性小角度X射线散射和动态光散射均在53.8°C时检测到热诱导的TPADO亚基解离,随后是与蛋白质聚集同时发生的三级结构的高温损失。计算出的单体界面解离焓与β-β界面解离引发的分解途径最一致,一种预测在RO中普遍存在的模式。作为增强TPADO稳定性的策略,我们建议优先考虑β亚基接口的重新设计,随后对子单元进行有针对性的改进。
    Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3β3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system\'s activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by β-β interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the β subunit interfaces, with subsequent targeted improvements of the subunits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    新生哺乳动物心肌细胞迅速从胎儿转变为利用线粒体氧化磷酸化但失去有丝分裂能力的成人表型。我们测试了成年心肌细胞被迫逆转回到胎儿糖酵解表型是否会恢复增殖能力。我们删除了Uqcrfs1(线粒体Rieske铁硫蛋白,RISP)在成年小鼠的心脏中。随着RISP蛋白的减少,心脏线粒体功能下降,葡萄糖利用率提高。同时,他们经历了增生性重塑,在此期间心肌细胞数量增加了一倍,没有细胞肥大。细胞能量供应得以保留,AMPK激活缺失,mTOR激活明显。在RISP缺失的缺血心脏中,新的心肌细胞迁移到梗死区,提示治疗性心脏再生的潜力。RNA-seq揭示了与心脏发育和增殖相关的基因的上调。代谢组学分析显示α-酮戊二酸(TET介导的去甲基化所需)减少,S-腺苷甲硫氨酸(甲基转移酶活性所需)增加。分析显示基因转录起始位点附近的甲基化CpG增加。差异表达和差异甲基化的基因与上调的心脏发育途径有关。我们得出结论,线粒体功能的降低和葡萄糖利用率的增加可以恢复成年心肌细胞的有丝分裂能力,从而产生新的心脏细胞。可能通过修饰调节增殖所需基因的表观遗传修饰的底物。
    Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Rieske非血红素铁加氧酶(RO)是微生物生物降解和天然产物合成所必需的氧化还原酶。这些酶利用分子氧进行氧合反应,由于其广泛的反应范围和高选择性,使它们在应用酶学中非常有用。RO中氧活化的机制涉及相关蛋白质成分的氧化还原中心之间的电子转移,形成电子转移链(ETC)。尽管ETC对于电子补充至关重要,由于在氧活化过程中电子损失,它具有形成活性氧(ROS)的风险。我们先前的研究将ROS的形成与三组分异丙苯双加氧酶(CDO)的黄素依赖性还原酶中的O2解偶联联系起来。在本研究中,我们通过研究无细胞环境中ROS形成对多组分CDO系统的影响来扩展这一发现。特别是,我们重点研究了在NADH辅因子再生系统存在下过氧化氢(H2O2)形成对体外CDO催化功效效率的影响。基于此,我们建议使用CDO的替代(非天然)氧化还原合作伙伴实施混合系统,这在减少H2O2形成和增加产物形成方面是非常有利的。由邻苯二甲酸酯双加氧酶(PDR)和CDO的RO还原酶组成的混合系统被证明是茚的氧化官能化的最有前途的,与先前报道的用于CDO的无细胞反应系统相比,在24小时(TTN=1515)内产物形成增加4倍(20mM),生产率增加3倍。
    Rieske non-heme iron oxygenases (ROs) are redox enzymes essential for microbial biodegradation and natural product synthesis. These enzymes utilize molecular oxygen for oxygenation reactions, making them very useful biocatalysts due to their broad reaction scope and high selectivities. The mechanism of oxygen activation in ROs involves electron transfers between redox centers of associated protein components, forming an electron transfer chain (ETC). Although the ETC is essential for electron replenishment, it carries the risk of reactive oxygen species (ROS) formation due to electron loss during oxygen activation. Our previous study linked ROS formation to O2 uncoupling in the flavin-dependent reductase of the three-component cumene dioxygenase (CDO). In the present study, we extend this finding by investigating the effects of ROS formation on the multi-component CDO system in a cell-free environment. In particular, we focus on the effects of hydrogen peroxide (H2O2) formation in the presence of a NADH cofactor regeneration system on the catalytic efficiency of CDO in vitro. Based on this, we propose the implementation of hybrid systems with alternative (non-native) redox partners for CDO, which are highly advantageous in terms of reduced H2O2 formation and increased product formation. The hybrid system consisting of the RO-reductase from phthalate dioxygenase (PDR) and CDO proved to be the most promising for the oxyfunctionalization of indene, showing a 4-fold increase in product formation (20 mM) over 24 h (TTN of 1515) at a 3-fold increase in production rate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    根结线虫(RKN;Meloidogyne物种)是植物病原体,可在其宿主中引入多种效应物以促进感染。这些效应物的实际目标和功能机制在很大程度上仍未被探索。这项研究阐明了根结线虫在寄主植物环境中的作用和相互作用。Mj-NEROSs抑制INF1诱导的细胞死亡以及flg22诱导的call体沉积和活性氧(ROS)的产生。转录组分析强调了ROS相关基因在Mj-NEROSs表达时的下调。NEROS与植物Rieske的铁硫蛋白(ISP)相互作用,如酵母双杂交和双分子荧光互补所示。从咽下腺分泌成巨细胞,Mj-NEROS定位在与ISP相互作用的质体中,随后改变电子传输速率和ROS产生。此外,我们的结果表明,isp拟南芥突变体表现出增加的敏感性,表明ISP对植物免疫的重要性。线虫效应物与质体蛋白的相互作用强调了根质体在植物防御中的可能作用,在这个过程的细节上引发了许多问题。
    Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske\'s iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    PTEN诱导的激酶1(PINK1)-Parkin途径在维持高等真核细胞中线粒体的健康库中起着至关重要的作用。虽然这种途径的下游成分是众所周知的,上游触发因素仍较少探索。在这项研究中,我们对靶向各种线粒体电子传递链(ETC)复合物的抑制剂进行了广泛分析,以研究它们作为PINK1-Parkin通路激活剂的潜力.我们发现了氯氟卡班,一种抗菌化合物,作为同时抑制线粒体复合物III和V的新型通路激活剂,和V.RNA干扰(RNAi)证实这些复合物的双重抑制激活了PINK1-Parkin途径。有趣的是,我们发现白蛋白,特别是牛血清白蛋白(BSA)和人血清白蛋白(HSA)通常存在于培养基中,可以阻碍羰基氰化物间氯苯酰腙(CCCP)诱导的途径活化。然而,氯氟卡班的疗效不受白蛋白的影响,强调其研究PINK1-Parkin通路的可靠性。这项研究提供了对上游PINK1-Parkin途径激活的见解,并强调了培养条件对研究结果的影响。Cloflucarban成为研究线粒体质量控制和神经退行性疾病的有前途的工具。
    The PTEN-induced kinase 1 (PINK1)-Parkin pathway plays a vital role in maintaining a healthy pool of mitochondria in higher eukaryotic cells. While the downstream components of this pathway are well understood, the upstream triggers remain less explored. In this study, we conducted an extensive analysis of inhibitors targeting various mitochondrial electron transport chain (ETC) complexes to investigate their potential as activators of the PINK1-Parkin pathway. We identified cloflucarban, an antibacterial compound, as a novel pathway activator that simultaneously inhibits mitochondrial complexes III and V, and V. RNA interference (RNAi) confirmed that the dual inhibition of these complexes activates the PINK1-Parkin pathway. Intriguingly, we discovered that albumin, specifically bovine serum albumin (BSA) and human serum albumin (HSA) commonly present in culture media, can hinder carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced pathway activation. However, cloflucarban\'s efficacy remains unaffected by albumin, highlighting its reliability for studying the PINK1-Parkin pathway. This study provides insights into the activation of the upstream PINK1-Parkin pathway and underscores the influence of culture conditions on research outcomes. Cloflucarban emerges as a promising tool for investigating mitochondrial quality control and neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在本研究中,我们检查了α-酮戊二酸脱氢酶(KGDH)的线粒体过氧化氢(mH2O2)产生能力,并使用从雄性和雌性C57BL6N小鼠分离的肝脏线粒体将其与电子传递链(ETC)的成分进行了比较。我们首次显示,当线粒体以不同底物为燃料时,ETC复合物I和III在mH2O2的产生中存在一些性别二态。然而,在我们对这些性影响的调查中,我们意外发现:1.KGDH是男性和女性肝线粒体和2的主要mH2O2供应商。当线粒体被脂肪酸激活时,KGDH可以形成mH2O2,但只有当苹果酸被用来引发克雷布斯循环时。令人惊讶的是,2-酮-3-甲基戊酸(KMV),KGDH的位点特异性抑制剂,在氧化棕榈酰肉碱的男性和女性肝脏线粒体中几乎消除了mH2O2的产生。KMV抑制氧化肉豆蔻酰基-的雄性和雌性小鼠肝脏线粒体中mH2O2的产生,辛酰基-,或者丁酰肉碱.S1QEL1.1(S1)和S3QEL2(S3),抑制复合物I和III产生活性氧(ROS)的化合物,分别,不干扰OxPhos,当丙酮酸或酰基肉碱用作燃料时,对mH2O2产生速率的影响可忽略不计。然而,在含有S1和/或S3的反应混合物中包含KMV几乎消除了mH2O2的产生。一起,我们的发现表明KGDH是肝脏线粒体中主要的mH2O2发生器,即使使用脂肪酸作为燃料。
    In the present study, we examined the mitochondrial hydrogen peroxide (mH2O2) generating capacity of α-ketoglutarate dehydrogenase (KGDH) and compared it to components of the electron transport chain using liver mitochondria isolated from male and female C57BL6N mice. We show for the first time there are some sex dimorphisms in the production of mH2O2 by electron transport chain complexes I and III when mitochondria are fueled with different substrates. However, in our investigations into these sex effects, we made the unexpected and compelling discovery that 1) KGDH serves as a major mH2O2 supplier in male and female liver mitochondria and 2) KGDH can form mH2O2 when liver mitochondria are energized with fatty acids but only when malate is used to prime the Krebs cycle. Surprisingly, 2-keto-3-methylvaleric acid (KMV), a site-specific inhibitor for KGDH, nearly abolished mH2O2 generation in both male and female liver mitochondria oxidizing palmitoyl-carnitine. KMV inhibited mH2O2 production in liver mitochondria from male and female mice oxidizing myristoyl-, octanoyl-, or butyryl-carnitine as well. S1QEL 1.1 (S1) and S3QEL 2 (S3), compounds that inhibit reactive oxygen species generation by complexes I and III, respectively, without interfering with OxPhos and respiration, had a negligible effect on the rate of mH2O2 production when pyruvate or acyl-carnitines were used as fuels. However, inclusion of KMV in reaction mixtures containing S1 and/or S3 almost abolished mH2O2 generation. Together, our findings suggest KGDH is the main mH2O2 generator in liver mitochondria, even when fatty acids are used as fuel.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号