Electrode materials

电极材料
  • 文章类型: Journal Article
    聚苯并恶嗪(PBz)气凝胶具有巨大的潜力,但是他们的传统生产方法引起了环境和安全问题。这项研究通过提出一种生态友好的方法来合成聚苯并恶嗪衍生的高性能碳,从而解决了这一差距。关键创新在于使用丁香酚,乙二胺,和甲醛形成聚苯并恶嗪前体。这通过使用更安全的二甲基亚砜消除了有害溶剂。酸性催化剂起着至关重要的作用,不仅影响微观结构,而且通过促进链间连接来加强材料的骨架。值得注意的是,这种方法允许环境压力干燥,进一步增强其可持续性。聚苯并恶嗪作为前体产生两种不同的碳材料。由PBz煅烧产生的碳材料表示为PBZC,并且由PBz的凝胶化和煅烧产生的碳材料表示为PBZGC。通过不同的技术分析了这些碳材料的结构表征,如XRD,拉曼,XPS,和BET分析。BET分析显示,对于源自凝胶化方法(PBZGC)的碳,表面增加843m2g-1。PBZC和PBZGC的电化学研究表明,一种明确的形态,以及合适的孔隙率,当用作超级电容器的电极时,为提高材料的导电性铺平了道路。这项研究为利用杂原子掺杂,聚苯并恶嗪气凝胶衍生的碳作为可持续和高性能的替代传统碳材料在能源储存设备。
    Polybenzoxazine (PBz) aerogels hold immense potential, but their conventional production methods raise environmental and safety concerns. This research addresses this gap by proposing an eco-friendly approach for synthesizing high-performance carbon derived from polybenzoxazine. The key innovation lies in using eugenol, ethylene diamine, and formaldehyde to create a polybenzoxazine precursor. This eliminates hazardous solvents by employing the safer dimethyl sulfoxide. An acidic catalyst plays a crucial role, not only in influencing the microstructure but also in strengthening the material\'s backbone by promoting inter-chain connections. Notably, this method allows for ambient pressure drying, further enhancing its sustainability. The polybenzoxazine acts as a precursor to produce two different carbon materials. The carbon material produced from the calcination of PBz is denoted as PBZC, and the carbon material produced from the gelation and calcination of PBz is denoted as PBZGC. The structural characterization of these carbon materials was analyzed through different techniques, such as XRD, Raman, XPS, and BET analyses. BET analysis showed increased surface of 843 m2 g-1 for the carbon derived from the gelation method (PBZGC). The electrochemical studies of PBZC and PBZGC imply that a well-defined morphology, along with suitable porosity, paves the way for increased conductivity of the materials when used as electrodes for supercapacitors. This research paves the way for utilizing heteroatom-doped, polybenzoxazine aerogel-derived carbon as a sustainable and high-performing alternative to traditional carbon materials in energy storage devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近在硬X射线ROCK-SOLEIL快速EXAFS光束上实现了全场透射X射线显微镜,将微米空间分辨率添加到表征光束线的第二时间分辨率。受益于光束尺寸的多功能性,由于光束线聚焦光学,全场高光谱XANES成像已成功用于FeK边缘,用于监测150µm×150µmFe(o-phen)2(NCS)2单晶的压力引起的自旋转变以及毫米大小的LiFePO4电池电极。据报道,超过2000eV的高光谱成像可同时监测FeCu双金属催化剂沿毫米大小的催化剂床活化过程中Fe和Cu形态的变化。提出了使用Jupyter笔记本和多元数据分析进行数据采集和后数据分析的策略,讨论了与通过非空间分辨快速EXAFS技术获得的宏观信息相比,使用全场高光谱快速EXAFS成像在工艺条件下研究功能材料所获得的增益。
    Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK-SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由聚对苯二甲酸乙二醇酯(PET)产生的废物的不断增加的措施以及对生态适应的能量存储装置的兴趣,促使人们对将废物PET重新用于超级电容器的研究进行了升级。这篇综述旨在全面概述聚对苯二甲酸乙二醇酯废物(PETW)回收的最新进展,作为超级电容器电极的前体。该综述着眼于从废物中回收PET的不同方法,包括机械,化学,酶,等。它进一步探索了使用PET生产的电极材料的组合策略。此外,PET衍生材料在超级电容器应用中的电化学性能同样被分解,强调关键的电化学边界,如电容行为,循环稳定性,和电化学阻抗谱。需要可扩展和具有成本效益的回收方法,创造环保电解质,和改进的电化学性能的回收PET基超级电容器只是几个问题和机遇突出强调在这个不断扩大的环保行业。总的来说,这篇综述的目的是全面了解使用回收PETW作为超级电容器电极前体的前沿发展,强调生态友好型储能解决方案的潜力,并为可持续的未来做出贡献。
    The rising measure of waste produced from polyethene terephthalate (PET) and the interest in eco-accommodating energy storage arrangements have prompted escalated examination into reusing waste PET into supercapacitors. This review aims to provide a comprehensive overview of the most recent advancements in the recycling of polyethylene terephthalate waste (PETW), as a supercapacitor electrode precursor. The review looks at different methodologies for recovering PET from waste, including mechanical, chemical, enzyme, etc. It further explores the combination strategies for electrode materials produced using PET. Besides, PET-derived materials\' electrochemical performance in supercapacitor application is likewise broken down, with an emphasis on key electrochemical boundaries like capacitive behaviour, cyclic stability, and electrochemical impedance spectroscopy. The need for scalable and cost-effective recycling methods, the creation of eco-friendly electrolytes, and the improvement of the electrochemical performance of recycled PET-based supercapacitors are just a few of the issues and opportunities highlighted in this expanding eco-friendly industry. Overall, the goal of this review is to provide a comprehensive understanding of the cutting-edge developments in the use of recycled PETW as a precursor for supercapacitor electrodes, highlighting the eco-friendly energy storage solution\'s potential and contributing to a sustainable future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属有机骨架(MOFs)和MXenes在先进材料研究的队列中占有重要地位。这两种材料突出的物理和化学特性突出地促进了它们在不同领域的利用,尤其是电化学储能(EES)领域。极高的比表面积(SSA)的集体贡献,可定制的毛孔,和丰富的活性位点提出MOFs作为EES设备的整体材料。然而,传统的MOFs承受低电导率,限制了它们在实际应用中的效用。通过将MOFs与各种导电材料集成在一起开发混合材料是提高MOF导电性的有效途径。MXenes,配制为过渡金属的二维(2D)碳化物和氮化物,属于最新的2D材料类别。MXenes具有广泛的结构多样性,令人印象深刻的导电性,和丰富的表面化学特性。MOF@MXene杂化的电化学特性分别优于MOF和MXenes,归功于这两个组成部分的协同作用。此外,与MXene偶联的MOF衍生物,表现出独特的形态,表现出优异的电化学性能。MOF@MXene杂种的重要属性,包括各种合成方案,在这篇综述中进行了总结。这篇综述深入研究了MOF和MXenes的架构分析,以及他们先进的混合动力车。此外,对MOF@MXene杂化作为超级电容器(SC)的电活性材料的最新进展的全面调查是这篇综述的主要目标。本综述最后详细讨论了当前面临的挑战以及优化MOF@MXene复合材料的未来前景。
    Metal-organic frameworks (MOFs) and MXenes have gained prominence in the queue of advanced material research. Both materials\' outstanding physical and chemical characteristics prominently promote their utilization in diverse fields, especially the electrochemical energy storage (EES) domain. The collective contribution of extremely high specific surface area (SSA), customizable pores, and abundant active sites propose MOFs as integral materials for EES devices. However, conventional MOFs endure low conductivity, constraining their utility in practical applications. The development of hybrid materials via integrating MOFs with various conductive materials stands out as an effective approach to improvising MOF\'s conductivity. MXenes, formulated as two-dimensional (2D) carbides and nitrides of transition metals, fall in the category of the latest 2D materials. MXenes possess extensive structural diversity, impressive conductivity, and rich surface chemical characteristics. The electrochemical characteristics of MOF@MXene hybrids outperform MOFs and MXenes individually, credited to the synergistic effect of both components. Additionally, the MOF derivatives coupled with MXene, exhibiting unique morphologies, demonstrate outstanding electrochemical performance. The important attributes of MOF@MXene hybrids, including the various synthesis protocols, have been summarized in this review. This review delves into the architectural analysis of both MOFs and MXenes, along with their advanced hybrids. Furthermore, the comprehensive survey of the latest advancements in MOF@MXene hybrids as electroactive material for supercapacitors (SCs) is the prime objective of this review. The review concludes with an elaborate discussion of the current challenges faced and the future outlooks for optimizing MOF@MXene composites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项工作中,通过简单的水热过程有效地制备了β-NiS纳米颗粒(NPs)。这些NiSNP之间的形态差异是通过添加不同量的硫脲而产生的,相应的产物表示为NiS-15和NiS-5。通过电化学测试,NiS-15的比容量(Cs)在1Ag-1时为638.34Cg-1,而NiS-5为558.17Cg-1。为了探索这种β-NiSNP在超级电容器中的实际应用潜力,以活性炭(AC)为阳极组装了混合型超级电容器(HSC)装置。得益于NiS阴极的高容量和器件的大电压窗口,NiS-15//ACHSC在936.92Wkg-1时显示出43.57Whkg-1的高能量密度(Ed),而NiS-5//ACHSC在954.79Wkg-1时提供了37.89Whkg-1的较差Ed。两种HSC在10μg-1下在6000个循环中显示出优异的循环性能。实验结果表明,这项研究中的NiS-15和NiS-5都可以作为高性能超级电容器的潜在阴极。这种目前的合成方法简单,可以扩展到制备其他具有优异电化学性能的过渡金属硫化物(TMS)基电极材料。
    In this work, β-NiS nanoparticles (NPs) were efficiently prepared by a straightforward hydrothermal process. The difference in morphology between these NiS NPs was produced by adding different amounts of thiourea, and the corresponding products were denoted as NiS-15 and NiS-5. Through electrochemical tests, the specific capacity (Cs) of NiS-15 was determined to be 638.34 C g-1 at 1 A g-1, compared to 558.17 C g-1 for NiS-5. To explore the practical application potential of such β-NiS NPs in supercapacitors, a hybrid supercapacitor (HSC) device was assembled with activated carbon (AC) as an anode. Benefitting from the high capacity of the NiS cathode and the large voltage window of the device, the NiS-15//AC HSC showed a high energy density (Ed) of 43.57 W h kg-1 at 936.92 W kg-1, and the NiS-5//AC HSC provided an inferior Ed of 37.89 W h kg-1 at 954.79 W kg-1. Both HSCs showed excellent cycling performance over 6000 cycles at 10 A g-1. The experimental findings suggest that both NiS-15 and NiS-5 in this study can serve as potential cathodes for high-performance supercapacitors. This current synthesis method is simple and can be extended to the preparation of other transition metal sulfide (TMS)-based electrode materials with exceptional electrochemical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究旨在提高超级电容器的性能,特别注重优化电极材料。纯NiMn层状双氢氧化物(LDHs)具有优异的电化学性能,它们在实现高比电容方面具有局限性。因此,本文使用水热法成功合成了不同负载的氧化石墨烯(GO)的NiMnLDHs复合材料。合成材料的系统物理化学表征,如粉末X射线衍射(XRD),X射线光电子能谱(XPS),场发射扫描电子显微镜(FE-SEM),和拉曼光谱,揭示了GO掺杂对NiMnLDHs微观结构和电化学性能的影响。电化学测试表明,当GO掺杂水平为0.45wt%时,NiMnLDHs/GO电极材料在1Ag-1电流密度下的比电容为2096Fg-1,在10Ag-1下的比电容为1471Fg-1。此外,经过1000个周期的稳定性测试,该材料在5g-1时保持53.3%的电容,表明良好的循环稳定性。本研究不仅为超级电容器电极材料的研究提供了新的方向,也为开发低成本、高效的电极材料提供了新的策略。
    This study aims to enhance the performance of supercapacitors, focusing particularly on optimizing electrode materials. While pure NiMn layered double hydroxides (LDHs) exhibit excellent electrochemical properties, they have limitations in achieving high specific capacitance. Therefore, this paper successfully synthesized composite materials of NiMn LDHs with varying loadings of graphene oxide (GO) using a hydrothermal method. Systematic physicochemical characterization of the synthesized materials, such as powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), and Raman spectroscopy, revealed the influence of GO doping on the microstructure and electrochemical performance of NiMn LDHs. Electrochemical tests demonstrated that the NiMn LDHs/GO electrode material exhibited optimal electrochemical performance with a specific capacitance of 2096 F g-1 at 1 A g-1 current density and 1471 F g-1 at 10 A g-1, when GO doping level was 0.45 wt%. Furthermore, after 1000 cycles of stability testing, the material retained 53.3% capacitance at 5 A g-1, indicating good cyclic stability. This study not only provides new directions for research on supercapacitor electrode materials but also offers new strategies for developing low-cost and efficient electrode materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已证明将金属阳离子掺入V2O5是解决钒基氧化物作为单价或多价水性可充电电池电极的不良长期循环性能的有效方法。这是由于在V2O5电极中存在具有大的层间空间的双层结构以及嵌入的离子充当支柱以支撑层状结构并促进带电载流子的扩散的事实。然而,仍然缺乏对多离子共插层双层V2O5的机械稳定性的基本理解。在本文中,研究了具有两种类型的共插层离子的各种柱撑五氧化二钒。V-O键的均方根偏差和通过密度泛函理论计算的弹性常数被用作评估插层化合物稳定性的参考。还讨论了d带中心和电子带结构。我们的理论结果表明,嵌入策略对系统的结构特征和稳定性有很大影响。
    Incorporating metal cations into V2O5 has been proven to be an effective method for solving the poor long-term cycling performance of vanadium-based oxides as electrodes for mono- or multivalent aqueous rechargeable batteries. This is due to the existence of a bilayer structure with a large interlayer space in the V2O5 electrode and to the fact that the intercalated ions act as pillars to support the layered structure and facilitate the diffusion of charged carriers. However, a fundamental understanding of the mechanical stability of multi-ion-co-intercalated bilayered V2O5 is still lacking. In this paper, a variety of pillared vanadium pentoxides with two types of co-intercalated ions were studied. The root-mean-square deviation of the V-O bonds and the elastic constants calculated by density functional theory were used as references to evaluate the stability of the intercalated compounds. The d-band center and electronic band structures are also discussed. Our theoretical results show that the structural characteristics and stability of the system are quite strongly influenced by the intercalating strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    众多挑战,比如不间断的电力供应,稳定可靠的电源,和非运行时间的能量储存,由于缺乏先进的储能技术,出现在各个行业。随着便携式电子产品技术的不断进步,绿色能源,和交通,他们的创新生产存在固有的局限性。因此,正在进行的研究重点是追求可持续的储能技术。一个新兴的解决方案在于开发非对称超级电容器(ASCs),提供了将其工作电压极限扩展到超出电解质的热力学击穿电压范围的潜力。这是通过采用两种不同的电极材料来实现的,为ASCs面临的储能限制提供了有效的解决方案。当前的评论集中在开发真正的伪电容储能系统(ESS)的工作材料的进展上。此外,评估他们超越储能限制的能力。它提供了对基本储能机制的见解,绩效评估方法,以及电极材料策略的最新进展。该综述涉及开发高性能电极材料并实现有效的ASC类型。它深入研究了提高ASC能量密度的关键方面,提出辩论和前景,从而为不同应用中的下一代ASCs提供全面的理解和设计原则。
    Numerous challenges, like the uninterrupted supply of electricity, stable and reliable power, and energy storage during non-operational hours, arise across various industries due to the absence of advanced energy storage technologies. With the continual technological advancements in portable electronics, green energy, and transportation, there are inherent limitations in their innovative production. Thus, ongoing research is focused on pursuing sustainable energy storage technologies. An emerging solution lies in the development of asymmetric supercapacitors (ASCs), which offer the potential to extend their operational voltage limit beyond the thermodynamic breakdown voltage range of electrolytes. This is achieved by employing two distinct electrode materials, presenting an effective solution to the energy storage limitations faced by ASCs. The current review concentrates on the progression of working materials to develop authentic pseudocapacitive energy storage systems (ESS). Also, evaluates their ability to exceed energy storage constraints. It provides insights into fundamental energy storage mechanisms, performance evaluation methodologies, and recent advancements in electrode material strategies. The review approaches developing high-performance electrode materials and achieving efficient ASC types. It delves into critical aspects for enhancing the energy density of ASCs, presenting debates and prospects, thereby offering a comprehensive understanding and design principles for next-generation ASCs in diverse applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,钠离子电池(SIB)由于钠资源的高丰度和低成本而成为锂离子电池(LIBs)的有希望的替代候选产品。然而,它们的商业化受到固有局限性的阻碍,如能量密度低和循环稳定性差。为了解决这些问题,掺杂方法是提高SIB电极结构和电化学性能的最有前途的方法之一。这篇综述全面概述了兴奋剂策略的最新进展,重点是提高SIB的性能。各种掺杂剂,包括s-和p-block元素,过渡金属,氧化物,含碳材料,并讨论了更多的掺杂剂对增强SIBs电化学性能的影响。此外,还讨论了改善掺杂SIB材料性能的机理。它还强调了晶格中掺杂位点的重要性,这在优化电极结构的掺杂中也起着至关重要的作用,增强离子扩散动力学,和稳定电极/电解质界面。这篇综述以同时掺杂多个杂原子的最新研究为结尾,为高性能SIB提供有价值的观点。这项研究为研究人员和电池行业寻求储能技术进步提供了宝贵的见解。
    In recent years, sodium ion batteries (SIBs) emerged as promising alternative candidates for lithium ion batteries (LIBs) due to the high abundance and low cost of sodium resources. However, their commercialization has been hindered by inherent limitations, such as low energy density and poor cycling stability. To address these issues, doping methodology is one of the most promising approaches to boosting the structural and electrochemical properties of SIB electrodes. This review provides a comprehensive overview of recent advancements in doping strategies, focusing on the improvement of the performance of SIBs. Various dopants including s- and p-block elements, transition metals, oxides, carbonaceous materials, and many more dopants are discussed in terms of their effects on enhancing the electrochemical properties of SIBs. Furthermore, the mechanisms responsible for the improvement in the performance of doped SIBs materials are also discussed. It also highlights the importance of doping sites in the crystal lattice, which also play a crucial role in doping in optimizing electrode structure, enhancing ion diffusion kinetics, and stabilizing electrode/electrolyte interfaces. The review ends by looking at the recent studies in simultaneous multiple heteroatom doping, offering valuable perspectives for a high performance SIB. This study provides valuable insight into the researchers and battery industries striving for advancements in energy storage technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在目前的工作中,我们研究了改性钛酸钡(BaTiO3)的潜力,一种廉价的钙钛矿氧化物,来自地球丰富的前体,使用第一性原理计算开发高效的水氧化电催化剂。根据我们的计算,Rh掺杂是使BaTiO3吸收更多的光并且具有水氧化所需的更小的过电位的一种方式。已经表明,从用作催化剂的角度来看,TiO2封端的BaTiO3(001)表面更有前途。Rh掺杂将吸收光的光谱扩展到整个可见光范围。含水环境显著影响Rh掺杂的BaTiO3吸收太阳辐射的能力。Ti→Rh更换后,掺杂离子可以从相邻的氧离子中接管部分电子密度。因此,在水氧化反应过程中,铑离子可以处于3+和4+之间的中间氧化态。这会影响反应中间体在催化剂表面的吸附能,降低过潜在价值。
    In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize. It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction intermediates on the catalyst\'s surface, reducing the overpotential value.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号