Early-stage biofilms

早期生物膜
  • 文章类型: Journal Article
    鉴于生物膜对人体健康和材料腐蚀的重大影响,该领域的研究迫切需要更容易获得的技术,以促进新控制剂的测试和对生物膜生物学的一般理解。微量滴定板提供了一个方便的格式的标准化评价,包括替代治疗和分子调节剂的高通量测定。本研究介绍了一种新颖的生物膜分析软件(BAS),用于从微量滴定板图像定量生物膜。我们专注于早期生物膜生长阶段,并将BAS定量与常见技术进行了比较:直接浊度测量,与pyoverdine生产相关的固有荧光检测,和标准结晶紫染色,使图像分析和光密度测量。我们还评估了它们对检测由环状AMP和庆大霉素引起的细微生长效应的敏感性。我们的结果表明,BAS图像分析至少与分光光度法定量生物膜保留的结晶紫的标准方法一样灵敏。此外,我们证明了细菌在短暂孵育(从10分钟到4小时)后粘附,通过简单的冲洗从浮游种群中分离出来,可以监测,直到它们的生长被内在荧光检测到,BAS分析,或重新溶解的结晶紫。许多实验室可以广泛使用这些程序,包括那些资源有限的人,因为它们不需要分光光度计或其他专用设备。
    Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物膜可以增加饮用水的致病性污染,导致生物膜相关疾病,改变沉积物侵蚀速率,降解废水中的污染物。与成熟的生物膜相比,在早期阶段的生物膜已被证明是更敏感的抗微生物药物和更容易去除。对控制早期生物膜生长的物理因素的机制理解对于预测和控制生物膜发育至关重要。然而,这种理解目前是不完整的。这里,我们揭示了流体动力学条件和微尺度表面粗糙度对早期恶臭假单胞菌生物膜发展的影响,通过结合微流控实验,数值模拟,和流体力学理论。我们证明,在高流量条件下,早期生物膜的生长受到抑制,并且早期恶臭假单胞菌生物膜(生长时间<14h)的局部发育速度约为50μm/s。这与P.putida的游泳速度相似。我们进一步说明,微观表面粗糙度通过增加低流量区域的面积来促进早期生物膜的生长。此外,我们证明了临界平均剪应力,在此之上,早期生物膜停止形成,对于粗糙表面为0.9Pa,为平坦或光滑表面的值的三倍(0.3Pa)。流动条件和微尺度表面粗糙度对早期生物膜发育的重要控制,在这项研究中,将有助于未来预测和管理饮用水管道表面的早期恶臭假单胞菌生物膜发育,生物反应器,和水生环境中的沉积物。
    Biofilms can increase pathogenic contamination of drinking water, cause biofilm-related diseases, alter the sediment erosion rate, and degrade contaminants in wastewater. Compared with mature biofilms, biofilms in the early-stage have been shown to be more susceptible to antimicrobials and easier to remove. Mechanistic understanding of physical factors controlling early-stage biofilm growth is critical to predict and control biofilm development, yet such understanding is currently incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale surface roughness on the development of early-stage Pseudomonas putida biofilm through a combination of microfluidic experiments, numerical simulations, and fluid mechanics theories. We demonstrate that early-stage biofilm growth is suppressed under high flow conditions and that the local velocity for early-stage P. putida biofilms (growth time < 14 h) to develop is about 50 μm/s, which is similar to P. putida\'s swimming speed. We further illustrate that microscale surface roughness promotes the growth of early-stage biofilms by increasing the area of the low-flow region. Furthermore, we show that the critical average shear stress, above which early-stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large as the value for flat or smooth surfaces (0.3 Pa). The important control of flow conditions and microscale surface roughness on early-stage biofilm development, characterized in this study, will facilitate future predictions and managements of early-stage P. putida biofilm development on the surfaces of drinking water pipelines, bioreactors, and sediments in aquatic environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号