EDS1

EDS1
  • 文章类型: Journal Article
    疾病易感性增强1(EDS1)是植物病原体相关分子模式触发免疫(PTI)和效应子触发免疫(ETI)反应的关键调节因子。在甘蓝型油菜基因组中,我们鉴定了六个新的EDS1基因,其中四个对根瘤感染有反应,一种对化学控制有抗性的主要油菜病害。开发抗性品种是控制根茎感染的有效且经济可行的策略。生物信息学分析揭示了Bna-EDS1同源物中的保守结构域和结构一致性。Bna-EDS1启动子包含与多种植物激素和应激反应相关的元素,强调它们在植物防御中的关键作用。用Bna-EDS1过表达和RNAi转基因品系进行功能分析。Bna-EDS1过表达增强了对根肿病和上调防御相关基因(PR1、PR2、ICS1和CBP60)的抗性,而Bna-EDS1RNAi增加植物的敏感性,表明NBS-LRR下游的防御信号通路受到抑制。RNA-Seq分析确定了与根肿病抗性相关的关键转录本,包括苯丙素生物合成。SA调节因子NPR1的激活,防御信号标记PR1和PR2以及MYC-TF的上调表明EDS1介导的根茎抗性可能涉及SA途径。我们的发现强调了Bna-EDS1依赖性机制在甘蓝型油菜对根肿病的抗性中的关键作用,并为增强油菜对油菜疟原虫感染的抗性提供了有价值的见解。
    Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新出现的证据表明,根际细菌在以环境友好的方式改善植物抗病性方面具有有益的作用。在这项研究中,我们描述了根瘤菌,蜡状芽孢杆菌NJ01,增强水稻和拟南芥的细菌病原体抗性。转录组分析表明,NJ01的根接种诱导拟南芥叶片中水杨酸(SA)和脱落酸(ABA)相关基因的表达。遗传证据表明,EDS1,PAD4和WRKY18是蜡状芽孢杆菌NJ01诱导的细菌耐药性所必需的。EDS1-PAD4复合物与WRKY18相互作用并增强其DNA结合活性。WRKY18直接与SA生物合成基因ICS1和ABA生物合成基因NCED3和NCED5的启动子区域中的W盒结合,并有助于NJ01诱导的细菌抗性。一起来看,我们的发现表明EDS1/PAD4-WRKY18复合物在根瘤菌诱导的抗病性中的作用。
    Emerging evidence suggests a beneficial role of rhizobacteria in ameliorating plant disease resistance in an environment-friendly way. In this study, we characterize a rhizobacterium, Bacillus cereus NJ01, that enhances bacterial pathogen resistance in rice and Arabidopsis. Transcriptome analyses show that root inoculation of NJ01 induces the expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes in Arabidopsis leaves. Genetic evidence showed that EDS1, PAD4, and WRKY18 are required for B. cereus NJ01-induced bacterial resistance. An EDS1-PAD4 complex interacts with WRKY18 and enhances its DNA binding activity. WRKY18 directly binds to the W box in the promoter region of the SA biosynthesis gene ICS1 and ABA biosynthesis genes NCED3 and NCED5 and contributes to the NJ01-induced bacterial resistance. Taken together, our findings indicate a role of the EDS1/PAD4-WRKY18 complex in rhizobacteria-induced disease resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    对植物病毒感染的抗性涉及植物抗性(R)基因编码的蛋白质,viz.,核苷酸结合富含亮氨酸的重复序列(NLR),免疫受体。这些传感器NLR被病毒蛋白效应子直接或间接激活,在效应子触发的免疫中,导致防御信号通路的诱导,导致许多下游植物效应分子的合成,抑制感染周期的不同阶段,以及辅助NLR介导的细胞死亡反应的诱导。该过程中的早期事件涉及识别各种伴侣对R基因反应的激活以及将这些复合物转运到后续事件的位点。这些事件包括几种激酶级联途径的激活,以及两个主转录调节因子的合成,EDS1和NPR1,以及植物激素水杨酸,茉莉酸,和乙烯。植物激素,从一个准备好的,静止状态到活动状态,调节其余的防御信号通路,直接和彼此串扰。这种调节导致下游事件的各种抑制剂的周转和各种转录因子的合成,这些转录因子协作和/或竞争以诱导或抑制其他调节蛋白的转录。或植物效应分子。这种相互作用的网络导致在感染区域中单独或与细胞死亡一起作用的防御效应物的产生。有或没有非特异性的进一步激活,长距离阻力。这里,我们回顾了有关这些过程和本地响应的组成部分的当前知识状态,他们的互动,regulation,和串扰。
    Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物部署细胞表面和细胞内受体以检测病原体攻击并触发先天免疫应答。在宿主细胞内,核苷酸结合/富含亮氨酸的重复(NLR)蛋白家族充当病原体传感器或免疫防御输出和细胞死亡的下游介质,预防疾病。NLR介导的免疫的已建立的遗传基础揭示了植物用于对抗快速进化的微生物病原体的各种策略。NLR激活和信号传递到控制免疫执行的成分的分子机制尚不清楚。这里,我们回顾了最近对植物NLR传感器和信号功能的蛋白质结构和生化见解。当放在一起,数据显示了不同的NLR家族,无论是传感器还是信号传感器,融合基于核苷酸的第二信使和细胞钙以赋予免疫力。尽管植物中病原体激活的NLR参与植物特异性机制来促进防御,与哺乳动物NLR免疫受体对应物的比较突出了NLR免疫的一些共同工作原理。
    Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杨树锈病真菌Melampsoralarici-populina是最具破坏性的真菌(Pucciniales)之一,对杨树产业造成重要的经济损失。作为一种异型专性生物养菌,M.larici-populina传播取决于其通过落叶松和杨树寄生进行生殖周期的能力。基因组方法已从预测的梭菌种群的分泌组中鉴定出超过一千个候选分泌效应蛋白(CSEP),它们可能与感染过程有关。在这项研究中,我们在CSEP基因家族中选择了CSEP对(和一个三联体),它们具有很高的序列同源性,但在两个不同的宿主中显示出特定的基因表达谱。我们通过在异源植物系统Nicotianabenthamiana中表达,通过共聚焦显微镜确定了它们的亚细胞定位。9个中的5个显示出部分或完全的叶绿体定位。我们还通过酵母双杂交从落叶松和杨树中筛选了潜在的蛋白质相互作用物。一对CSEP和三元组共享共同的相互作用者,而另外两对的成员没有来自任一宿主的共同目标。最后,轮虫诱导定量表明,当在N.benthamiana中瞬时表达时,CSEP的两对和三联体诱导了基质。N.benthamianaeds1和nrg1敲除系的使用表明,CSEP可以通过不依赖eds1的机制诱导基质。然而,CSEP同源物对滑鼠诱导具有相同的影响,并有助于发现新的滑鼠诱导级联,该级联可以部分和/或完全独立于eds1。
    The poplar rust fungus Melampsora larici-populina is part of one of the most devastating group of fungi (Pucciniales) and causes important economic losses to the poplar industry. Because M. larici-populina is a heteroecious obligate biotroph, its spread depends on its ability to carry out its reproductive cycle through larch and then poplar parasitism. Genomic approaches have identified more than 1,000 candidate secreted effector proteins (CSEPs) from the predicted secretome of M. larici-populina that are potentially implicated in the infection process. In this study, we selected CSEP pairs (and one triplet) among CSEP gene families that share high sequence homology but display specific gene expression profiles among the two distinct hosts. We determined their subcellular localization by confocal microscopy through expression in the heterologous plant system Nicotiana benthamiana. Five out of nine showed partial or complete chloroplastic localization. We also screened for potential protein interactors from larch and poplar by yeast two-hybrid assays. One pair of CSEPs and the triplet shared common interactors, whereas the members of the two other pairs did not have common targets from either host. Finally, stromule induction quantification revealed that two pairs and the triplet of CSEPs induced stromules when transiently expressed in N. benthamiana. The use of N. benthamiana eds1 and nrg1 knockout lines showed that CSEPs can induce stromules through an eds1-independent mechanism. However, CSEP homologs shared the same impact on stromule induction and contributed to discovering a new stromule induction cascade that can be partially and/or fully independent of eds1. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    拟南芥植物蛋白缺乏4(PAD4)作为具有增强疾病易感性1(EDS1)的异二聚体在病原体抗性中具有重要作用。在这里,我们研究了PAD4的另一个作用,其中它与免疫相关的半胱氨酸蛋白酶响应脱水19(RD19)相关并促进其成熟。我们发现RD19及其同系物RD19c可促进EDS1-和PAD4介导的效应子触发的对无毒丁香假单胞菌菌株的免疫,DC3000,表达效应器AvrRps4和针对真菌病原体菊苣青霉的基础免疫。RD19的过表达,而不是RD19蛋白酶失活催化突变体,在拟南芥中,转基因系引起EDS1-和PAD4依赖性自身免疫并增强病原体抗性。在这些线条中,RD19成熟为前体形式需要其催化残基,建议RD19进行自动处理。在瞬时测定中,PAD4优先与RD19原蛋白酶相互作用,并促进其在叶细胞中的核积累。我们的结果使我们提出了PAD4刺激的防御增强模型。PAD4促进加工过的RD19的成熟和核积累,然后RD19刺激EDS1-PAD4二聚体活性以赋予病原体抗性。这项研究强调了潜在的其他重要的PAD4功能,这些功能最终会集中在植物免疫中的经典EDS1-PAD4二聚体信号传导上。
    Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum. Overexpression of RD19, but not RD19 protease-inactive catalytic mutants, in Arabidopsis transgenic lines caused EDS1- and PAD4-dependent autoimmunity and enhanced pathogen resistance. In these lines, RD19 maturation to a pro-form required its catalytic residues, suggesting that RD19 undergoes auto-processing. In transient assays, PAD4 interacted preferentially with the RD19 pro-protease and promoted its nuclear accumulation in leaf cells. Our results lead us to propose a model for PAD4-stimulated defense potentiation. PAD4 promotes maturation and nuclear accumulation of processed RD19, and RD19 then stimulates EDS1-PAD4 dimer activity to confer pathogen resistance. This study highlights potentially important additional PAD4 functions that eventually converge on canonical EDS1-PAD4 dimer signaling in plant immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    白粉病(PM)真菌是仅入侵植物表皮细胞的专性生物营养病原体。任何植物叶片都有两个表皮表面:正面(上)和背面(下)。虽然在许多植物物种中,两个叶片表面都容易受到适应的PM真菌的影响,在包括拟南芥在内的一些植物物种中观察到了叶片背面免疫。这种叶片背面免疫的遗传基础仍然未知。在这项研究中,我们使用适应的PM分离物菊苣未尾果灵酵母(Gc)UCSC1测试了一系列在一种或多种已知防御途径中存在缺陷的拟南芥突变体。我们发现,在EDS1/PAD4-和PEN2/PEN3依赖性防御受损的突变体中,叶片背轴免疫显着受损。始终如一,EDS1-YFP和PEN2-GFP在各自的eds1-2和pen2-1突变体背景中各自天然启动子的表达在背轴表皮细胞中比在背轴表皮细胞中更高。总之,我们的结果表明,拟南芥对PM的叶片背面免疫至少部分归因于增强的EDS1/PAD4-和PEN2/PEN3依赖性防御。这种转录预编程的防御机制可能在其他植物物种(例如大麻)中的叶片背面免疫不足,并且可以用于在作物植物中针对PM真菌的正面免疫工程。
    Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1-yellow fluorescent protein and PEN2-green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    在位于法戈的北达科他州农业大学校园的美国农业部工作时,北达科他州,在1940年代和1950年代,HaroldH.Flor制定了共同进化的植物宿主-病原体相互作用的遗传原理,这些相互作用控制疾病抗性或易感性。他的“基因对基因”遗产在现代植物病理学中根深蒂固,并继续为植物免疫识别和信号传导的分子模型提供信息。在这次审查中,我们讨论了核苷酸结合域/富含亮氨酸重复序列(NLR)受体赋予植物免疫的最新生化见解,它们是自然界和栽培作物中主要的基因对基因抗性决定因素。病原体激活的NLR寡聚物(抗性体)的结构和生化分析揭示了不同的NLR亚型如何以各种方式聚集在钙(Ca2)信号上以促进病原体免疫和宿主细胞死亡。特别引人注目的是由植物toll-白介素1受体(TIR)结构域NLR酶促产生的基于核苷酸的信号的鉴定。这些小分子是TIR产生的环状和非环核苷酸信号的新兴家族的一部分,这些信号可以引导细菌中的免疫和细胞死亡反应。哺乳动物,和植物。一种结合的遗传,分子,植物NLR激活和信号的生化理解为对抗作物疾病提供了令人兴奋的新机会。[公式:见正文]版权所有©2023作者(S)。这是在CCBY-NC-ND4.0国际许可证下分发的开放访问文章。
    While working for the United States Department of Agriculture on the North Dakota Agricultural College campus in Fargo, North Dakota, in the 1940s and 1950s, Harold H. Flor formulated the genetic principles for coevolving plant host-pathogen interactions that govern disease resistance or susceptibility. His \'gene-for-gene\' legacy runs deep in modern plant pathology and continues to inform molecular models of plant immune recognition and signaling. In this review, we discuss recent biochemical insights to plant immunity conferred by nucleotide-binding domain/leucine-rich-repeat (NLR) receptors, which are major gene-for-gene resistance determinants in nature and cultivated crops. Structural and biochemical analyses of pathogen-activated NLR oligomers (resistosomes) reveal how different NLR subtypes converge in various ways on calcium (Ca2+) signaling to promote pathogen immunity and host cell death. Especially striking is the identification of nucleotide-based signals generated enzymatically by plant toll-interleukin 1 receptor (TIR) domain NLRs. These small molecules are part of an emerging family of TIR-produced cyclic and noncyclic nucleotide signals that steer immune and cell-death responses in bacteria, mammals, and plants. A combined genetic, molecular, and biochemical understanding of plant NLR activation and signaling provides exciting new opportunities for combatting diseases in crops. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有N末端Toll/白介素-1受体(TIR)结构域的植物细胞内结合核苷酸的富含亮氨酸的重复序列(NLR)受体检测病原体效应子,以产生TIR催化的信号分子,从而激活植物免疫。含有TIR的NLR(TNL)蛋白的植物免疫信号集中在增强的疾病易感性1(EDS1)及其直接伴侣植物抗毒素缺陷4(PAD4)或衰老相关基因101(SAG101)上。TNL信号传导还需要辅助NLRsN需求基因1(NRG1)和激活的抗病性1(ADR1)。在最近发表在《科学》杂志上的两篇引人注目的论文中,作者表明,含有TIR的蛋白质催化并产生两种类型的信号分子,ADPr-ATP/diADPR和pRib-AMP/ADP。重要的是,他们证明EDS1-SAG101和EDS1-PAD4模块是ADPr-ATP/diADPRp和Rib-AMP/ADP的受体复合物,分别,其变构促进EDS1-SAG101与NRG1的相互作用和EDS1-PAD4与ADR1的相互作用。因此,由含有TIR的蛋白质催化的两种不同的小分子选择性地激活EDS1介导的免疫信号的下游两个不同的分支。这些突破性的研究大大推进了我们对TNL下游信号通路的理解。
    Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors with an N-terminal Toll/Interleukin-1 receptor (TIR) domain detect pathogen effectors to produce TIR-catalyzed signaling molecules for activation of plant immunity. Plant immune signaling by TIR-containing NLR (TNL) proteins converges on Enhanced Disease Susceptibility 1 (EDS1) and its direct partners Phytoalexin Deficient 4 (PAD4) or Senescence-Associated Gene 101 (SAG101). TNL signaling also require helper NLRs N requirement gene 1 (NRG1) and activated disease resistance 1 (ADR1). In two recent remarkable papers published in Science, the authors show that the TIR-containing proteins catalyze and produce two types of signaling molecules, ADPr-ATP/diADPR and pRib-AMP/ADP. Importantly, they demonstrate that EDS1-SAG101 and EDS1-PAD4 modules are the receptor complexes for ADPr-ATP/diADPRp and Rib-AMP/ADP, respectively, which allosterically promote EDS1-SAG101 interaction with NRG1 and EDS1-PAD4 interaction with ADR1. Thus, two different small molecules catalyzed by TIR-containing proteins selectively activate the downstream two distinct branches of EDS1-mediated immune signalings. These breakthrough studies significantly advance our understanding of TNL downstream signaling pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Tritici(B.g.tritici)是空气传播的真菌病原体,可在六倍体面包小麦上引起白粉病。钙调蛋白结合转录激活因子(CAMTAs)调节植物对环境的反应,但是它们在调节小麦B.g.中的潜在功能。小麦相互作用仍然未知。在这项研究中,小麦CAMTA转录因子TaCAMTA2和TaCAMTA3被鉴定为小麦抗白粉病后渗透抗性的抑制因子。TaCAMTA2和TaCAMTA3的瞬时过表达增强了小麦对B.g.小麦的渗透后敏感性,而使用瞬时或病毒诱导的基因沉默敲低TaCAMTA2和TaCAMTA3表达会损害小麦对B.g.小麦的渗透后敏感性。此外,TaSARD1和TaEDS1被表征为小麦对白粉病的渗透后抗性的正调节剂。过表达TaSARD1和TaEDS1赋予小麦对B.G.的渗透后抗性。小麦,沉默TaSARD1和TaEDS1可增强小麦对B.g.小麦的渗透后敏感性。重要的是,我们发现TaCAMTA2和TaCAMTA3的沉默增强了TaSARD1和TaEDS1的表达。总的来说,这些结果表明,易感性基因TaCAMTA2和TaCAMTA3有助于小麦B.g。小麦相容性可能通过对TaSARD1和TaEDS1表达的负调控。
    Blumeria graminis forma specialis tritici (B.g. tritici) is the airborne fungal pathogen that causes powdery mildew disease on hexaploid bread wheat. Calmodulin-binding transcription activators (CAMTAs) regulate plant responses to environments, but their potential functions in the regulation of wheat-B.g. tritici interaction remain unknown. In this study, the wheat CAMTA transcription factors TaCAMTA2 and TaCAMTA3 were identified as suppressors of wheat post-penetration resistance against powdery mildew. Transient overexpression of TaCAMTA2 and TaCAMTA3 enhanced the post-penetration susceptibility of wheat to B.g. tritici, while knockdown of TaCAMTA2 and TaCAMTA3 expression using transient- or virus-induced gene silencing compromised wheat post-penetration susceptibility to B.g. tritici. In addition, TaSARD1 and TaEDS1 were characterized as positive regulators of wheat post-penetration resistance against powdery mildew. Overexpressing TaSARD1 and TaEDS1 confers wheat post-penetration resistance against B.g. tritici, while silencing TaSARD1 and TaEDS1 enhances wheat post-penetration susceptibility to B.g. tritici. Importantly, we showed that expressions of TaSARD1 and TaEDS1 were potentiated by silencing of TaCAMTA2 and TaCAMTA3. Collectively, these results implicated that the Susceptibility genes TaCAMTA2 and TaCAMTA3 contribute to the wheat-B.g. tritici compatibility might via negative regulation of TaSARD1 and TaEDS1 expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号