E-box motif

  • 文章类型: Journal Article
    黑素细胞分化由主调节转录因子MITF协调。然而,它辨别与有效基因调控相关的不同结合位点的能力仍然知之甚少。本研究旨在评估共激活剂乙酰转移酶如何与MITF相互作用以调节其相关的赖氨酸作用。从而介导下游基因调控,包括DNA亲和力,稳定性,转录活性,特别是在外壳色素沉着的过程中。这里,我们已经证明CgMITF蛋白可以被乙酰化,进一步实现黑素细胞成熟程序的选择性扩增。与转录共调节因子p300的协作使MITF动态地与下游靶向基因启动子相互作用。我们已经确定MITF激活部分依赖于bHLH域,在不同物种之间保存良好。bHLH结构域含有保守的赖氨酸残基,包括K6和K43,它们与下游靶向基因的E盒基序相互作用。K6和K43处的突变导致E盒基序的结合亲和力降低。CgMITF蛋白与酪氨酸酶相关基因启动子区域内的E-box基序结合,有助于黑色素生成,并且还与TBX2启动子区域内的E盒基序相互作用,与黑素细胞增殖有关。我们阐明了bHLH结构域如何连接C.gigas中黑素细胞发育中的转录调节和乙酰化修饰。
    Melanocyte differentiation is orchestrated by the master regulator transcription factor MITF. However, its ability to discern distinct binding sites linked to effective gene regulation remains poorly understood. This study aims to assess how co-activator acetyltransferase interacts with MITF to modulate their related lysine action, thereby mediating downstream gene regulation, including DNA affinity, stability, transcriptional activity, particularly in the process of shell pigmentation. Here, we have demonstrated that the CgMITF protein can be acetylated, further enabling selective amplification of the melanocyte maturation program. Collaboration with transcriptional co-regulator p300 advances MITF dynamically interplay with downstream targeted gene promoters. We have established that MITF activation was partially dependent on the bHLH domain, which was well conserved across species. The bHLH domain contained conserved lysine residues, including K6 and K43, which interacted with the E-box motif of downstream targeted-genes. Mutations at K6 and K43 lead to a decrease in the binding affinity of the E-box motif. CgMITF protein bound to the E-box motif within the promoter regions of the tyrosinase-related genes, contributing to melanogenesis, and also interacted with the E-box motif within the TBX2 promoter regions, associated with melanocyte proliferation. We elucidated how the bHLH domain links the transcriptional regulation and acetylation modifications in the melanocyte development in C. gigas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Epithelial-to-Mesenchymal Transition (EMT) is necessary for metastasis. Zinc- finger domain-containing transcription factors, especially Snail1, bind to E-box motifs and play a crucial role in the induction and regulation of EMT.
    OBJECTIVE: We hypothesized if C-terminal region of Snail1 (CSnail1) may competitively bind to E-box and block cancer metastasis.
    METHODS: The CSnail1 gene coding sequence was inserted into the pIRES2-EGFP vector. Following transfection of A549 cells with the designed construct, EMT was induced with TGF-β1 and the expression of essential EMT markers was evaluated by real-time PCR and immunoblotting. We also monitored cell migration.
    RESULTS: CSnail1 inhibited TGF-β1-induced N-cadherin and vimentin mRNA expression and increased β-catenin expression in transfected TGF-β1-treated A549 cells. A similar finding was obtained in western blotting. CSnail1 also blocked the migration of transfected cells in the scratch test.
    CONCLUSIONS: Transfection of A549 cells with CSnail1 alters the expression of essential EMT markers and consequently suppresses tumor cell migration. These findings confirm the capability of CSnail1 in EMT blocking and in parallel to current patents could be applied as a novel strategy in the prevention of metastasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Muscovy duck-origin goose parvovirus (MDGPV) is a causative agent of MDGPV-associated Derzsy\'s disease. To evalute the role of the cis-acting element E-box (CACATG) deletion on MDGPV eplication, an infectious plasmid clone p-PTΔE287, having one E-box deletion at nucleotide (nt) 287 of the left inverted terminal repeat sequence (L-ITR), was constructed by overlap extension PCR deleting the 287CACATG292 motif from the plasmid pMDGPVPT containing the full-length genome of the virulent MDGPV strain PT. The p-PTΔE287 plasmid was transfected into 9-day-old non-immune Muscovy duck embryos via the yolk sac, resulting in successful rescue of the deletion mutant virus r-PTΔE287. Compared with its parental virus PT, the virulence and the replication ability of r-PTΔE287 were reduced. In addition, we examined the ability of r-PTΔE287 to manipulate cell cycle progression. The results showed that r-PTΔE287 replication results in G0/G1 phase accumulation of infected duck embryo liver mesenchymal stem cells (BMSCs) and that this accumulation is caused by the prevention of cell cycle entry from G0/G1 phase into S phase. Taken together, introducing 287CACATG292 element deletion into MDGPV PT genomic DNA that induced rescued mutant virus (r-PTΔE287) cell cycle arrest function at the G0/G1 phase, which might inhibit MDGPV replication and virus progeny production. This study laid the foundation for further understanding of the relationship between E-box deletion in the L-ITR and MDGPV virulence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    To obtain a deletion mutant of Muscovy duck-origin goose parvovirus (MDGPV) and to analyze its biological characteristics, the pMDGPVPT plasmid, which contains a full-length DNA infectious clone of the MDGPV PT strain, was used in this study as the template. The E-box at nt 315 of the left inverted terminal repeat sequence (L-ITR) was deleted by overlap extension PCR to obtain the infectious recombinant plasmid p-PTΔE315. The p-PTΔE315 plasmid was transfected into 9-day-old non-immune Muscovy duck embryos via the yolk sac and the rescued deletion mutant virus r-PTΔE315 was generated. Experiments to demonstrate the novel deletion mutant virus\' biological characteristics showed that r-PTΔE315 can cause typical lesions after infection of Muscovy duck embryos. Compared with its parent strain PT, the virulence of r-PTΔE315 and its proliferation ability in Muscovy duck embryos were attenuated, but its ability to replicate in MDEF cells was enhanced. This study laid the foundation for further understanding of the relationship between E-box deletion in the L-ITR and MDGPV virulence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号