E/I balance

E / I 平衡
  • 文章类型: Journal Article
    被诊断患有自闭症谱系障碍(ASD)的个体经常表现出听觉感知异常,一种可能归因于构成皮质回路的兴奋性和抑制性细胞改变的现象。然而,受ASD影响的确切遗传因素和细胞类型尚不清楚.本研究使用BTBRTItpr3tf/J(BTBR)小鼠研究了听觉皮层中兴奋和抑制活性的平衡,一个完善的自闭症研究模型。我们的研究揭示了BTBR小鼠AC内的小白蛋白阳性(PV+)神经元的减少。值得注意的是,体内磁共振波谱研究显示,该皮质区域的谷氨酸(Glu)水平升高,γ-氨基丁酸(GABA)水平降低。此外,小鼠模型的转录组学分析有助于根据细胞功能和途径对几种ASD相关基因进行分类。通过将自闭症风险基因与ASD小鼠模型的RNA转录组测序数据进行比较,我们鉴定了复发靶基因Scn1a并进行了验证.有趣的是,我们发现了Scn1a在皮质抑制性神经元中的特异性表达。这些发现对于理解ASD动物模型中异常感觉知觉的潜在神经机制具有重要价值。
    Individuals diagnosed with autism spectrum disorder (ASD) frequently exhibit abnormalities in auditory perception, a phenomenon potentially attributed to alterations in the excitatory and inhibitory cells constituting cortical circuits. However, the exact genetic factors and cell types affected by ASD remain unclear. The present study investigated the balance of excitatory and inhibitory activity in the auditory cortex using BTBR T+ Itpr3tf/J (BTBR) mice, a well-established model for autism research. Our investigation unveiled a reduction in parvalbumin-positive (PV+) neurons within the AC of BTBR mice. Remarkably, in vivo magnetic resonance spectroscopy studies disclosed an elevation in glutamate (Glu) levels alongside a decrement in γ-aminobutyric acid (GABA) levels in this cortical region. Additionally, transcriptomic analysis of the mouse model facilitated the classification of several ASD-associated genes based on their cellular function and pathways. By comparing autism risk genes with RNA transcriptome sequencing data from the ASD mouse model, we identified the recurrent target gene Scn1a and performed validation. Intriguingly, we uncovered the specific expression of Scn1a in cortical inhibitory neurons. These findings hold significant value for understanding the underlying neural mechanisms of abnormal sensory perception in animal models of ASD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甜菜碱是一种内源性渗透压物质,通过减轻各种神经系统疾病而表现出治疗潜力。然而,负责其神经保护作用的潜在细胞和分子机制仍然令人困惑。在这项研究中,我们描述了甜菜碱对保护神经元免受兴奋性毒性的积极影响背后的可能机制。在这里,我们证明,甜菜碱在低浓度调节GABA摄取GAT1(slc6a1),中枢神经系统中主要的GABA转运蛋白。这种调节是通过对转运蛋白的时间抑制而发生的,其中甜菜碱的长时间占用会阻碍转运蛋白迅速过渡到向内构象。重要的是,甜菜碱对GAT1的调节作用是可逆的,随着细胞外GABA的增加,GAT1的阻断消失。使用电生理学,质谱,放射性标记的细胞测定,和分子动力学模拟,我们证明甜菜碱在GAT1中具有双重作用:在mM浓度下充当缓慢的底物,在µM时作为GABA的时间阻滞剂,当它低于K0.5时。鉴于这种独特的调节特性和缺乏任何有害的副作用,甜菜碱作为抑制途径的有希望的神经调节剂通过GAT1改善GABA稳态,从而赋予神经保护以对抗兴奋性毒性。
    Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Here we demonstrate that betaine at low concentration modulates the GABA uptake by GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. This modulation occurs through the temporal inhibition of the transporter, wherein prolonged occupancy by betaine impedes the swift transition of the transporter to the inward conformation. Importantly, the modulatory effect of betaine on GAT1 is reversible, as the blocking of GAT1 disappears with increased extracellular GABA. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine has a dual role in GAT1: at mM concentration acts as a slow substrate, and at µM as a temporal blocker of GABA, when it is below its K0.5. Given this unique modulatory characteristic and lack of any harmful side effects, betaine emerges as a promising neuromodulator of the inhibitory pathways improving GABA homeostasis via GAT1, thereby conferring neuroprotection against excitotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:持续的认知缺陷和功能障碍与双相情感障碍(BD)相关,即使在和谐阶段。默认模式网络(DMN)的功能障碍对于自我参照和情绪心理过程至关重要,并且与BD有关。本研究旨在探索兴奋性和抑制性神经递质的平衡,即谷氨酸和γ-氨基丁酸(GABA),在BD患者(euBD)期间的DMN中心。
    方法:本研究招募了34名euBD和55名健康对照(HC)。使用质子磁共振波谱(1H-MRS),在内侧前额叶皮质/前扣带皮质(mPFC/ACC)和后扣带回(PCC)中测量谷氨酸(带有PRESS序列)和GABA水平(带有MEGAPRESS序列)。使用所测量的兴奋性谷氨酸/谷氨酰胺(Glx)和抑制性GABA的浓度来计算兴奋性/抑制性(E/I)比率。使用威斯康星州卡片分类测试和连续绩效测试分别评估了执行和注意功能。
    结果:euBD在注意功能方面的表现比对照组差(p=0.001)。与对照组相比,euBD在PCC中具有较高的E/I比(p=0.023),主要由euBD的PCC中较高的Glx水平驱动(p=0.002)。仅在BD组中,观察到mPFCE/I比值(Glx/GABA)与执行功能之间存在轻微显著的负相关(p=0.068).
    结论:干扰的E/I平衡,在euBD中观察到PCC中特别升高的Glx/GABA比率。DMN中心的E/I平衡可以作为euBD的潜在生物标志物,这也可能导致他们执行功能较差。
    BACKGROUND: Persistent cognitive deficits and functional impairments are associated with bipolar disorder (BD), even during the euthymic phase. The dysfunction of default mode network (DMN) is critical for self-referential and emotional mental processes and is implicated in BD. The current study aims to explore the balance of excitatory and inhibitory neurotransmitters, i.e. glutamate and γ-aminobutyric acid (GABA), in hubs of the DMN during the euthymic patients with BD (euBD).
    METHODS: Thirty-four euBD and 55 healthy controls (HC) were recruited to the study. Using proton magnetic resonance spectroscopy (1H-MRS), glutamate (with PRESS sequence) and GABA levels (with MEGAPRESS sequence) were measured in the medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC) and the posterior cingulate gyrus (PCC). Measured concentrations of excitatory glutamate/glutamine (Glx) and inhibitory GABA were used to calculate the excitatory/inhibitory (E/I) ratio. Executive and attentional functions were respectively assessed using the Wisconsin card-sorting test and continuous performance test.
    RESULTS: euBD performed worse on attentional function than controls (p = 0.001). Compared to controls, euBD had higher E/I ratios in the PCC (p = 0.023), mainly driven by a higher Glx level in the PCC of euBD (p = 0.002). Only in the BD group, a marginally significant negative association between the mPFC E/I ratio (Glx/GABA) and executive function was observed (p = 0.068).
    CONCLUSIONS: Disturbed E/I balance, particularly elevated Glx/GABA ratio in PCC is observed in euBD. The E/I balance in hubs of DMN may serve as potential biomarkers for euBD, which may also contribute to their poorer executive function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Systematic Review
    1H-磁共振波谱(MRS)是一种非侵入性技术,可用于量化体内脑中代谢物的浓度。自闭症背景下的MRS研究结果不一致且相互矛盾。我们对测量谷氨酸和γ-氨基丁酸(GABA)的MRS研究进行了系统评价和荟萃分析,以及参与能量代谢的脑代谢物(谷氨酰胺,肌酸),神经和神经胶质的完整性(例如N-乙酰天冬氨酸(NAA),胆碱,自闭症队列中的肌醇)和氧化应激(谷胱甘肽)。数据被提取并按代谢物分组,在计算标准化效应大小之前,大脑区域和其他几个因素。总的来说,我们发现自闭症患者的GABA和NAA浓度明显降低,指示大脑回路内兴奋/抑制之间的平衡中断,以及神经完整性。进一步的分析发现,这些改变在自闭症儿童和与自闭症表型相关的边缘大脑区域最为明显。此外,我们展示了研究结果如何因人口统计学和方法论因素而变化,强调符合标准化共识研究设计和透明报告的重要性。
    1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    兴奋毒性和抑制的同时丧失是明确的机制,驱动兴奋/抑制性(E/I)平衡的急性升高和对脑的缺血性损伤后的神经元细胞死亡。尽管心脏骤停导致的全球脑缺血(GCI)幸存者长期残疾的患病率很高,目前尚不清楚E/I失衡是否持续超过急性期并对功能恢复产生负面影响.我们先前在心脏骤停/心肺复苏(CA/CPR)的鼠模型中证明了海马CA1神经元的长期增强(LTP)持续受损与学习和记忆任务缺陷相关。这里,我们使用CA/CPR和体外缺血模型来阐明E/I失衡导致雄性小鼠持续海马功能障碍的机制.我们揭示了海马CA1区突触后GABAA受体(GABAAR)聚集和功能的增加,从而降低了E/I比。重要的是,在前24小时观察到的减少的GABAAR聚类在缺血后3天反弹至GABA能聚类的升高。这种GABA能抑制的增加需要激活Ca2+通透性离子通道瞬时受体电位melastatin-2(TRPM2),先前涉及CA/CPR后持续性LTP和记忆缺陷。此外,我们发现了Ca2+信号,可能是TRPM2激活的下游,上调Ca2+/钙调蛋白依赖性蛋白激酶II(CaMKII)活性,从而驱动突触后抑制功能的提高。因此,我们提出了一种新的机制,通过该机制在缺血的情况下上调抑制性突触强度,并将TRPM2和CaMKII鉴定为潜在的药理学靶点,以恢复扰动的突触可塑性和改善认知功能.重要声明兴奋/抑制(E/I)失衡导致许多中枢神经系统疾病的长期残疾,包括脑缺血.先前的研究表明,缺血诱导的海马突触可塑性缺陷有助于长期认知障碍,然而,海马功能障碍的潜在机制尚不明确.这里,我们结合体内和体外方法来证明GABAA受体聚集和功能的升高有助于缺血后延迟时间点海马E/I平衡和长期增强功能的减少。我们进一步确定了TRPM2离子通道和Ca2依赖性激酶的持续激活,CaMKII,是缺血诱导的GABA能突触抑制增强所必需的,强调改善缺血后长期功能恢复的有希望的新靶点。
    Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:皮质兴奋性测量神经对刺激的反应性,通常通过经颅磁刺激(TMS)。兴奋/抑制平衡(E/I)是神经回路的兴奋和抑制活性之间正在进行的平衡。根据一些研究,E/I可以通过脑电图(EEG)信号的建模在体内和非侵入性进行估计,并称为“内在兴奋性”措施。已经提出了几种措施(伽马波段的相位一致性,样本熵,功率谱密度1/f曲线的指数,从趋势波动分析中提取的E/I指数,和阿尔法力量)。初级运动皮层(M1)的间歇性theta爆发刺激(iTBS)是一种非侵入性神经调节技术,可以控制和局灶性增强TMS皮层兴奋性和受刺激半球的E/I。
    目的:调查E/I对TMS兴奋性量表的估计程度以及它们之间的关系。
    方法:在一组健康受试者的iTBS之前和之后,评估了从静息状态EEG记录中提取的M1兴奋性(TMS)和一些E/I估计值。
    结果:TMSM1兴奋性增强,通过运动诱发电位(MEP)测量,皮层在高伽马波段的相位一致性相互关联。E/I的其他指标显示了一些预期的结果,但与TMS兴奋性测量没有相关性或彼此之间有很强的一致性。
    结论:EEGE/I估计提供了一个有趣的机会来非侵入地绘制皮质兴奋性图,具有高时空分辨率和与刺激无关的方法。虽然不同的EEGE/I估计可能反映了不同的兴奋-抑制回路的活动,伽玛波段的空间相位同步是最好地捕获初级运动皮层兴奋性变化的量度。
    BACKGROUND: Cortical excitability measures neural reactivity to stimuli, usually delivered via Transcranial Magnetic Stimulation (TMS). Excitation/inhibition balance (E/I) is the ongoing equilibrium between excitatory and inhibitory activity of neural circuits. According to some studies, E/I could be estimated in-vivo and non-invasively through the modeling of electroencephalography (EEG) signals and termed \'intrinsic excitability\' measures. Several measures have been proposed (phase consistency in the gamma band, sample entropy, exponent of the power spectral density 1/f curve, E/I index extracted from detrend fluctuation analysis, and alpha power). Intermittent theta burst stimulation (iTBS) of the primary motor cortex (M1) is a non-invasive neuromodulation technique allowing controlled and focal enhancement of TMS cortical excitability and E/I of the stimulated hemisphere.
    OBJECTIVE: Investigating to what extent E/I estimates scale with TMS excitability and how they relate to each other.
    METHODS: M1 excitability (TMS) and several E/I estimates extracted from resting state EEG recordings were assessed before and after iTBS in a cohort of healthy subjects.
    RESULTS: Enhancement of TMS M1 excitability, as measured through motor-evoked potentials (MEPs), and phase consistency of the cortex in high gamma band correlated with each other. Other measures of E/I showed some expected results, but no correlation with TMS excitability measures or strong consistency with each other.
    CONCLUSIONS: EEG E/I estimates offer an intriguing opportunity to map cortical excitability non-invasively, with high spatio-temporal resolution and with a stimulus independent approach. While different EEG E/I estimates may reflect the activity of diverse excitatory-inhibitory circuits, spatial phase synchrony in the gamma band is the measure that best captures excitability changes in the primary motor cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自闭症谱系障碍(ASD)是一种复杂的神经发育障碍,影响各种认知和行为领域。虽然ASD的遗传成分已经很成熟,在人类中发现的众多综合征基因中,没有一个占临床患者的1%以上。由于大量的靶基因,已经产生了许多这种疾病的小鼠模型。然而,专注于不同的大脑回路,行为表型和不同的实验方法使得难以将大量的模型动物研究综合成具体的通路,将不同层次的研究数据连接起来。在这里,我们选择专注于一个电路,海马体,还有一个假设,兴奋/抑制平衡的转变,检查,从三部分突触的水平到体内回路活动的水平,不同模型之间的关键共性可以说明如何更好地理解ASD对海马回路功能的影响。
    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that impacts a variety of cognitive and behavioral domains. While a genetic component of ASD has been well-established, none of the numerous syndromic genes identified in humans accounts for more than 1% of the clinical patients. Due to this large number of target genes, numerous mouse models of the disorder have been generated. However, the focus on distinct brain circuits, behavioral phenotypes and diverse experimental approaches has made it difficult to synthesize the overwhelming number of model animal studies into concrete throughlines that connect the data across levels of investigation. Here we chose to focus on one circuit, the hippocampus, and one hypothesis, a shift in excitatory/inhibitory balance, to examine, from the level of the tripartite synapse up to the level of in vivo circuit activity, the key commonalities across disparate models that can illustrate a path towards a better mechanistic understanding of ASD\'s impact on hippocampal circuit function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    5-羟色胺能神经元是神经调质的主要系统之一,其弥散投射调节大脑皮层的功能。已知5-羟色胺(5-HT)在与行为环境相关的皮层活动的差异调节中起关键作用。5-HT信号组织的某些特征表明,在初级视觉皮层(V1)的关键时期,它可能作为活动依赖性突触变化的调节剂参与。5-羟色胺能系统的细胞是首先分化和运作的神经元。在产后发育过程中,中缝核的分支在视觉皮层区域大量分布,显着增加5-HT用于调节兴奋性和抑制性突触活性的可用性。大量证据表明,V1表层锥体神经元的突触可塑性主要取决于对兴奋与抑制(E/I)之间平衡的精细调节。因此,5-HT可以在控制这种平衡方面发挥重要作用,提供有利于突触修饰的适当兴奋性条件。为了探索这种可能性,本工作采用体外细胞内电生理记录技术研究5-HT对V1层2/3神经元E/I平衡的影响,在关键时期。已经分析了自发活动对E/I平衡的血清素能作用,诱发的突触反应,和长期抑郁症(LTD)。我们的结果表明,5-HT的主要作用意味着E/I平衡的减少。5-HT在兴奋性突触中促进LTD,同时在抑制性突触部位阻断LTD,从而将突触强度的Hebbian改变向较低水平的E/I平衡转移。
    Serotonergic neurons constitute one of the main systems of neuromodulators, whose diffuse projections regulate the functions of the cerebral cortex. Serotonin (5-HT) is known to play a crucial role in the differential modulation of cortical activity related to behavioral contexts. Some features of the 5-HT signaling organization suggest its possible participation as a modulator of activity-dependent synaptic changes during the critical period of the primary visual cortex (V1). Cells of the serotonergic system are among the first neurons to differentiate and operate. During postnatal development, ramifications from raphe nuclei become massively distributed in the visual cortical area, remarkably increasing the availability of 5-HT for the regulation of excitatory and inhibitory synaptic activity. A substantial amount of evidence has demonstrated that synaptic plasticity at pyramidal neurons of the superficial layers of V1 critically depends on a fine regulation of the balance between excitation and inhibition (E/I). 5-HT could therefore play an important role in controlling this balance, providing the appropriate excitability conditions that favor synaptic modifications. In order to explore this possibility, the present work used in vitro intracellular electrophysiological recording techniques to study the effects of 5-HT on the E/I balance of V1 layer 2/3 neurons, during the critical period. Serotonergic action on the E/I balance has been analyzed on spontaneous activity, evoked synaptic responses, and long-term depression (LTD). Our results pointed out that the predominant action of 5-HT implies a reduction in the E/I balance. 5-HT promoted LTD at excitatory synapses while blocking it at inhibitory synaptic sites, thus shifting the Hebbian alterations of synaptic strength towards lower levels of E/I balance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    动物行为,从简单到复杂,依赖于神经元与功能性神经回路的忠实联系。在称为关键时期的短暂发育窗口中,神经回路经历了戏剧性的经验依赖性重塑。可塑性关键时期的环境经验会对电路功能和行为产生持续的变化。早熟的关键时期关闭与自闭症谱系障碍有关,而延长的突触重塑被认为是精神分裂症患者回路功能障碍的基础。因此,解决指示关键时期时机的机制对于我们理解神经发育障碍很重要。关键周期定时的控制由神经元固有的线索调制,然而,最近的数据表明,一些决定因素来自邻近的神经胶质细胞(星形胶质细胞,小胶质细胞,和少突胶质细胞)。因为胶质细胞占人类大脑的50%,了解这些不同的细胞如何与神经元以及彼此沟通,以塑造神经可塑性,特别是在特殊的关键时期,对于我们对电路开发和维护的基本理解至关重要。
    Animal behavior, from simple to complex, is dependent on the faithful wiring of neurons into functional neural circuits. Neural circuits undergo dramatic experience-dependent remodeling during brief developmental windows called critical periods. Environmental experience during critical periods of plasticity produces sustained changes to circuit function and behavior. Precocious critical period closure is linked to autism spectrum disorders, whereas extended synaptic remodeling is thought to underlie circuit dysfunction in schizophrenia. Thus, resolving the mechanisms that instruct critical period timing is important to our understanding of neurodevelopmental disorders. Control of critical period timing is modulated by neuron-intrinsic cues, yet recent data suggest that some determinants are derived from neighboring glial cells (astrocytes, microglia, and oligodendrocytes). As glia make up 50% of the human brain, understanding how these diverse cells communicate with neurons and with each other to sculpt neural plasticity, especially during specialized critical periods, is essential to our fundamental understanding of circuit development and maintenance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自闭症谱系障碍(ASD)风险基因的突变会破坏神经网络动力学,最终导致异常行为。要了解ASD风险基因如何影响行为过程中的神经回路计算,我们通过在X连锁ASD风险基因NEXMIF(神经突延伸和迁移因子)完全敲除的转基因小鼠中,同时对数百个CA1神经元进行大规模细胞钙成像,分析了海马网络.由于NEXMIF基因敲除导致小鼠严重的学习和记忆缺陷,我们检查了自愿运动过程中的CA1网络,空间记忆的基本组成部分。我们发现NEXMIF敲除不会改变单个神经元的整体兴奋性,但会夸大与运动相关的神经元反应。为了量化网络功能连通性变化,我们将来自图论的紧密中心性分析应用于大规模钙成像数据集,除了使用常规的成对相关分析。接近中心性分析考虑了网络中神经元之间的连接数量和连接强度。我们发现,在野生型小鼠中,CA1网络在运动过程中不同步,与活动行为期间增加的网络信息编码一致。在NEXMIF淘汰后,无论行为状态如何,CA1网络都是过同步的,并且在运动过程中无法去同步,强调ASD相关基因的扰动如何产生异常网络同步,这可能有助于ASD相关行为。
    Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network dynamics that ultimately lead to abnormal behavior. To understand how ASD-risk genes influence neural circuit computation during behavior, we analyzed the hippocampal network by performing large-scale cellular calcium imaging from hundreds of individual CA1 neurons simultaneously in transgenic mice with total knockout of the X-linked ASD-risk gene NEXMIF (neurite extension and migration factor). As NEXMIF knockout in mice led to profound learning and memory deficits, we examined the CA1 network during voluntary locomotion, a fundamental component of spatial memory. We found that NEXMIF knockout does not alter the overall excitability of individual neurons but exaggerates movement-related neuronal responses. To quantify network functional connectivity changes, we applied closeness centrality analysis from graph theory to our large-scale calcium imaging datasets, in addition to using the conventional pairwise correlation analysis. Closeness centrality analysis considers both the number of connections and the connection strength between neurons within a network. We found that in wild-type mice the CA1 network desynchronizes during locomotion, consistent with increased network information coding during active behavior. Upon NEXMIF knockout, CA1 network is over-synchronized regardless of behavioral state and fails to desynchronize during locomotion, highlighting how perturbations in ASD-implicated genes create abnormal network synchronization that could contribute to ASD-related behaviors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号