Drosophila neuromuscular junction

  • 文章类型: Journal Article
    跨膜蛋白β-淀粉样前体蛋白(APP)在阿尔茨海默病(AD)的病理生理学中起着重要作用。β-淀粉样蛋白假说认为APP的异常加工会形成神经毒性的β-淀粉样蛋白聚集体,这导致在AD中观察到的认知障碍。虽然许多其他因素有助于AD,有必要更好地了解APP的突触功能。我们发现果蝇APP样(APPL)在与Kismet(Kis)的突触中具有共享和非共享的角色,染色质解旋酶结合域(CHD)蛋白。Kis是CHD7和CHD8的同源物,两者都涉及神经发育障碍,包括CHARGE综合征和自闭症谱系障碍,分别。在其中枢神经系统中表达人APP和BACE的kis和动物中功能突变的丧失显示谷氨酸受体亚基的减少,GluRIIC,GTP酶Rab11和骨形态发生蛋白(BMP),pMad,在果蝇幼虫神经肌肉接头(NMJ)。同样,像内吞这样的过程,幼虫运动,这些动物的神经传递是有缺陷的。我们的药理学和上位性实验表明,Kis和APPL之间存在功能关系,但是Kis不调节幼虫NMJ的appl表达。相反,它可能影响APPL的突触定位,可能是通过促进rab11转录。这些数据确定了AD中染色质重塑蛋白与异常突触功能之间的潜在机制联系。
    The transmembrane protein β-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer\'s disease (AD). The β-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic β-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了最佳的突触生长和功能,必须严格调节细胞表面细胞粘附分子的适当表达和定位。神经元质膜蛋白,包括细胞粘附分子,早期内体和质膜之间的周期知之甚少。在这里,我们显示,果蝇同源的染色质重塑酶CHD7和CHD8,Kismet,抑制几种细胞粘附分子的突触水平。在kismet突变突触中,神经凝集素1和3以及整合素αPS2和βPS增加,但Kismet仅直接调节神经凝集素2的转录。因此,Kismet可以通过激活促进细胞内囊泡运输的基因产物(包括内皮素B(endoB)和/或rab11)的转录来间接调节突触CAM。在所有组织或神经元中敲除EndoB会增加突触FasII,而在kis突变体中敲除EndoB不会产生FasII的累加增加。相比之下,在kis突变体中缺乏的Rab11的神经元表达,导致kis突变体中突触FasII的进一步增加。这些数据支持以下假设:Kis通过促进早期内体的细胞内囊泡运输来影响FasII的突触定位。
    The appropriate expression and localization of cell surface cell adhesion molecules must be tightly regulated for optimal synaptic growth and function. How neuronal plasma membrane proteins, including cell adhesion molecules, cycle between early endosomes and the plasma membrane is poorly understood. Here we show that the Drosophila homolog of the chromatin remodeling enzymes CHD7 and CHD8, Kismet, represses the synaptic levels of several cell adhesion molecules. Neuroligins 1 and 3 and the integrins αPS2 and βPS are increased at kismet mutant synapses but Kismet only directly regulates transcription of neuroligin 2. Kismet may therefore regulate synaptic CAMs indirectly by activating transcription of gene products that promote intracellular vesicle trafficking including endophilin B (endoB) and/or rab11. Knock down of EndoB in all tissues or neurons increases synaptic FasII while knock down of EndoB in kis mutants does not produce an additive increase in FasII. In contrast, neuronal expression of Rab11, which is deficient in kis mutants, leads to a further increase in synaptic FasII in kis mutants. These data support the hypothesis that Kis influences the synaptic localization of FasII by promoting intracellular vesicle trafficking through the early endosome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触前稳态可塑性(PHP)通过神经递质释放增强作用抵消受损的神经递质受体功能,从而稳定突触传递。PHP被认为是由受损的受体功能触发的,并且涉及刻板的信号通路。然而,在这里,我们证明了类似地减少突触传递的不同受体扰动导致果蝇神经肌肉接头的不同反应。虽然谷氨酸受体(GluR)拮抗剂γ-D-谷氨酰甘氨酸(γDGG)的受体抑制不能被PHP补偿,GluR抑制剂Philanotoxin-433(PhTx)和Gyki-53655(Gyki)诱导补偿性PHP。有趣的是,PHP触发的PhTx和Gyki涉及可分离的信号通路,包括抑制不同的GluR亚型,有源区支架Bruchpilot的差分调制,和短期可塑性。此外,虽然PHP在Gyki治疗不需要基因促进PHTx诱导的PHP,它涉及突触前蛋白激酶D。因此,突触不仅对类似的活动损伤有不同的反应,但是通过不同的机制实现稳态补偿,强调稳态信号的多样性。
    Presynaptic homeostatic plasticity (PHP) stabilizes synaptic transmission by counteracting impaired neurotransmitter receptor function through neurotransmitter release potentiation. PHP is thought to be triggered by impaired receptor function and to involve a stereotypic signaling pathway. However, here we demonstrate that different receptor perturbations that similarly reduce synaptic transmission result in different responses at the Drosophila neuromuscular junction. While receptor inhibition by the glutamate receptor (GluR) antagonist γ-D-glutamylglycine (γDGG) is not compensated by PHP, the GluR inhibitors Philanthotoxin-433 (PhTx) and Gyki-53655 (Gyki) induce compensatory PHP. Intriguingly, PHP triggered by PhTx and Gyki involve separable signaling pathways, including inhibition of distinct GluR subtypes, differential modulation of the active-zone scaffold Bruchpilot, and short-term plasticity. Moreover, while PHP upon Gyki treatment does not require genes promoting PhTx-induced PHP, it involves presynaptic protein kinase D. Thus, synapses not only respond differentially to similar activity impairments, but achieve homeostatic compensation via distinct mechanisms, highlighting the diversity of homeostatic signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Within mammalian brain circuits, activity-dependent synaptic adaptations, such as synaptic scaling, stabilize neuronal activity in the face of perturbations. Stability afforded through synaptic scaling involves uniform scaling of quantal amplitudes across all synaptic inputs formed on neurons, as well as on the postsynaptic side. It remains unclear whether activity-dependent uniform scaling also operates within peripheral circuits. We tested for such scaling in a Drosophila larval neuromuscular circuit, where the muscle receives synaptic inputs from different motoneurons. We used motoneuron-specific genetic manipulations to increase the activity of only one motoneuron and recordings of postsynaptic currents from inputs formed by the different motoneurons. We discovered an adaptation which caused uniform downscaling of evoked neurotransmitter release across all inputs through decreases in release probabilities. This \"presynaptic downscaling\" maintained the relative differences in neurotransmitter release across all inputs around a homeostatic set point, caused a compensatory decrease in synaptic drive to the muscle affording robust and stable muscle activity, and was induced within hours. Presynaptic downscaling was associated with an activity-dependent increase in Drosophila vesicular glutamate transporter expression. Activity-dependent uniform scaling can therefore manifest also on the presynaptic side to produce robust and stable circuit outputs. Within brain circuits, uniform downscaling on the postsynaptic side is implicated in sleep- and memory-related processes. Our results suggest that evaluation of such processes might be broadened to include uniform downscaling on the presynaptic side.SIGNIFICANCE STATEMENT To date, compensatory adaptations which stabilise target cell activity through activity-dependent global scaling have been observed only within central circuits, and on the postsynaptic side. Considering that maintenance of stable activity is imperative for the robust function of the nervous system as a whole, we tested whether activity-dependent global scaling could also manifest within peripheral circuits. We uncovered a compensatory adaptation which causes global scaling within a peripheral circuit and on the presynaptic side through uniform downscaling of evoked neurotransmitter release. Unlike in central circuits, uniform scaling maintains functionality over a wide, rather than a narrow, operational range, affording robust and stable activity. Activity-dependent global scaling therefore operates on both the presynaptic and postsynaptic sides to maintain target cell activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Glutamate receptor auxiliary proteins control receptor distribution and function, ultimately controlling synapse assembly, maturation, and plasticity. At the Drosophila neuromuscular junction (NMJ), a synapse with both pre- and postsynaptic kainate-type glutamate receptors (KARs), we show that the auxiliary protein Neto evolved functionally distinct isoforms to modulate synapse development and homeostasis. Using genetics, cell biology, and electrophysiology, we demonstrate that Neto-α functions on both sides of the NMJ. In muscle, Neto-α limits the size of the postsynaptic receptor field. In motor neurons (MNs), Neto-α controls neurotransmitter release in a KAR-dependent manner. In addition, Neto-α is both required and sufficient for the presynaptic increase in neurotransmitter release in response to reduced postsynaptic sensitivity. This KAR-independent function of Neto-α is involved in activity-induced cytomatrix remodeling. We propose that Drosophila ensures NMJ functionality by acquiring two Neto isoforms with differential expression patterns and activities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Axonal damage can cause a loss of neural control of target peripheral muscles and other organs. The hallmark of complete recovery from severe axonal injury is a successful return of function. To assay the degree of functional loss or recovery from injury, a measurement of electrical communication at the nerve-target junction can be used. Drosophila larval neuromuscular junction (NMJ) provides a genetically tractable and easily accessible model to measure the electrophysiological properties of the synapse. To study the functional consequences of injuries to the peripheral nerve, we describe the procedure to measure the spontaneous and evoked response to neurotransmitter release at the NMJ.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Many neurodegenerative conditions and age-related neuropathologies are associated with increased levels of reactive oxygen species (ROS). The cap \"n\" collar (CncC) family of transcription factors is one of the major cellular system that fights oxidative insults, becoming activated in response to oxidative stress. This transcription factor signaling is conserved from metazoans to human and has a major developmental and disease-associated relevance. An important mammalian member of the CncC family is nuclear factor erythroid 2-related factor 2 (Nrf2) which has been studied in numerous cellular systems and represents an important target for drug discovery in different diseases. CncC is negatively regulated by Kelch-like ECH associated protein 1 (Keap1) and this interaction provides the basis for a homeostatic control of cellular antioxidant defense. We have utilized the Drosophila model system to investigate the roles of CncC signaling on longevity, neuronal function and circadian rhythm. Furthermore, we assessed the effects of CncC function on larvae and adult flies following exposure to stress. Our data reveal that constitutive overexpression of CncC modifies synaptic mechanisms that positively impact on neuronal function, and suppression of CncC inhibitor, Keap1, shows beneficial phenotypes on synaptic function and longevity. Moreover, supplementation of antioxidants mimics the effects of augmenting CncC signaling. Under stress conditions, lack of CncC signaling worsens survival rates and neuronal function whilst silencing Keap1 protects against stress-induced neuronal decline. Interestingly, overexpression and RNAi-mediated downregulation of CncC have differential effects on sleep patterns possibly via interactions with redox-sensitive circadian cycles. Thus, our data illustrate the important regulatory potential of CncC signaling in neuronal function and synaptic release affecting multiple aspects within the nervous system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Calpains are calcium-dependent, cytosolic proteinases active at neutral pH. They do not degrade but cleave substrates at limited sites. Calpains are implicated in various pathologies, such as ischemia, injuries, muscular dystrophy, and neurodegeneration. Despite so, the physiological function of calpains remains to be clearly defined. Using the neuromuscular junction of Drosophila of both sexes as a model, we performed RNAi screening and uncovered that calpains negatively regulated protein levels of the glutamate receptor GluRIIA but not GluRIIB. We then showed that calpains enrich at the postsynaptic area, and the calcium-dependent activation of calpains induced cleavage of GluRIIA at Q788 of its C terminus. Further genetic and biochemical experiments revealed that different calpains genetically and physically interact to form a protein complex. The protein complex was required for the proteinase activation to downregulate GluRIIA. Our data provide a novel insight into the mechanisms by which different calpains act together as a complex to specifically control GluRIIA levels and consequently synaptic function.SIGNIFICANCE STATEMENT Calpain has been implicated in neural insults and neurodegeneration. However, the physiological function of calpains in the nervous system remains to be defined. Here, we show that calpain enriches at the postsynaptic area and negatively and specifically regulates GluRIIA, but not IIB, level during development. Calcium-dependent activation of calpain cleaves GluRIIA at Q788 of its C terminus. Different calpains constitute an active protease complex to cleave its target. This study reveals a critical role of calpains during development to specifically cleave GluRIIA at synapses and consequently regulate synaptic function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们已经询问了能够实现双向的突触对话,谷氨酸能果蝇神经肌肉接头(NMJ)的突触前功效的稳态控制。我们发现稳态抑郁和增强使用不同的遗传,归纳法,和表达机制。具体来说,稳态增强是通过突触后降低CaMKII活性并在神经支配NMJ的两种神经元亚型之一上突触前增加活动区物质的丰度来实现的,而稳态抑郁发生时,CaMKII活性没有改变,并且在两种神经元亚型中都有表达。此外,稳态抑制仅通过过度的突触前谷氨酸释放引起,并且无视突触后反应。我们建议两个独立的稳态调节调节果蝇NMJ的突触前功效:一个是细胞间信号系统,在突触后兴奋性减弱后增强突触强度,而另一种则通过自分泌机制自适应调节突触前谷氨酸的释放,而没有来自突触后室的反馈。
    We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of presynaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ). We find that homeostatic depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Investigating mechanisms of general anesthesia requires access to multiple levels of neuronal function, from effects at individual synapses to responses in behaving animals. Drosophila melanogaster provides an excellent model to test different theories for general anesthesia because it offers robust methods for testing local as well as global target processes, in an animal that is similarly impacted by these diverse drugs as humans. Here, we outline methods to quantify two such endpoints, neurotransmission and behavioral responsiveness, focusing on the intravenous drug propofol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号