DnaQ

  • 文章类型: Journal Article
    通过校对活性去除错误掺入的核苷酸确保了DNA复制的保真度。而ε-外切核酸酶DnaQ是模型生物大肠杆菌中公认的校对者,已经表明,大多数细菌的校对依赖于复制聚合酶的聚合酶和组织糖醇磷酸酶(PHP)域,尽管存在结构和功能上不同于大肠杆菌DnaQ的DnaQ同系物。然而,这种非规范DnaQ的生物学功能尚不清楚。这里,我们提供了独立证据,证明非规范DnaQ可作为分枝杆菌的额外校对者.使用突变累积测定与全基因组测序相结合,我们发现在耻垢分枝杆菌中DnaQ的缺失导致突变率增加,导致在均聚物道中AT偏倚的诱变和增加的插入/缺失。我们的结果表明,分枝杆菌DnaQ与β钳结合,并与PHP域校对器协同作用以纠正复制错误。此外,dnaQ的丢失导致复制叉功能障碍,可能由于对叉子塌陷的脆弱性增加,导致亚抑制性氟喹诺酮类药物的生长减弱和诱变增加。通过分析结核分枝杆菌(Mtb)临床分离株dnaQ的序列多态性,我们证明了在Mtb谱系4.3中普遍存在的一种自然进化的DnaQ变异体可能具有超突变性,并且与耐药性相关.这些结果建立了一个共同校对模型,并建议在DnaQ和PHP领域校对器之间进行分工。这项研究还提供了现实世界的证据,表明在Mtb的适应过程中可能存在突变驱动的进化途径。
    The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the β clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR-Cas系统为细菌提供对病毒的适应性免疫。在隔片自适应期间,Cas1-Cas2复合物选择外源DNA的片段,叫做预起搏器,并将它们以提供功能性免疫的方向整合到CRISPR阵列中。在几种I型CRISPR-Cas系统中,Cas4参与预缩放体的修剪和前间隔区相邻基序(PAM)的裂解,但是在缺乏Cas4的系统中如何处理预起搏器,例如I-E和I-F型系统,不理解。在大肠杆菌中,它有一个I-E型系统,Cas1-Cas2通过对PAM的特定识别,优先选择具有3''悬垂的预封装器,但是在不存在Cas4的情况下,这些预起搏器是如何以功能取向整合的,目前尚不清楚。使用纯化蛋白质的生化方法,以及整合,预起搏器保护,测序,测序和定量PCR检测,我们在这里表明,细菌3'-5'核酸外切酶DnaQ和ExoT可以修剪长长的3'突出部分,并促进正确方向的整合。我们发现通过这些外切核酸酶的修剪会导致不对称的中间体,因为Cas1-Cas2保护PAM序列,这有助于定义间隔物方向。我们的发现暗示大肠杆菌宿主3'-5'核酸外切酶DnaQ和ExoT参与间隔区适应,并揭示了在大肠杆菌中定义间隔区方向的机制。
    CRISPR-Cas systems provide bacteria with adaptive immunity against viruses. During spacer adaptation, the Cas1-Cas2 complex selects fragments of foreign DNA, called prespacers, and integrates them into CRISPR arrays in an orientation that provides functional immunity. Cas4 is involved in both the trimming of prespacers and the cleavage of protospacer adjacent motif (PAM) in several type I CRISPR-Cas systems, but how the prespacers are processed in systems lacking Cas4, such as the type I-E and I-F systems, is not understood. In Escherichia coli, which has a type I-E system, Cas1-Cas2 preferentially selects prespacers with 3\' overhangs via specific recognition of a PAM, but how these prespacers are integrated in a functional orientation in the absence of Cas4 is not known. Using a biochemical approach with purified proteins, as well as integration, prespacer protection, sequencing, and quantitative PCR assays, we show here that the bacterial 3\'-5\' exonucleases DnaQ and ExoT can trim long 3\' overhangs of prespacers and promote integration in the correct orientation. We found that trimming by these exonucleases results in an asymmetric intermediate, because Cas1-Cas2 protects the PAM sequence, which helps to define spacer orientation. Our findings implicate the E. coli host 3\'-5\' exonucleases DnaQ and ExoT in spacer adaptation and reveal a mechanism by which spacer orientation is defined in E. coli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Pol III core is the three-subunit subassembly of the E. coli replicative DNA polymerase III holoenzyme. It contains the catalytic polymerase subunit α, the 3\' → 5\' proofreading exonuclease ε, and a subunit of unknown function, θ. We employ optical tweezers to characterize pol III core activity on a single DNA substrate. We observe polymerization at applied template forces F < 25 pN and exonucleolysis at F > 30 pN. Both polymerization and exonucleolysis occur as a series of short bursts separated by pauses. For polymerization, the initiation rate after pausing is independent of force. In contrast, the exonucleolysis initiation rate depends strongly on force. The measured force and concentration dependence of exonucleolysis initiation fits well to a two-step reaction scheme in which pol III core binds bimolecularly to the primer-template junction, then converts at rate k2 into an exo-competent conformation. Fits to the force dependence of kinit show that exo initiation requires fluctuational opening of two base pairs, in agreement with temperature- and mismatch-dependent bulk biochemical assays. Taken together, our results support a model in which the pol and exo activities of pol III core are effectively independent, and in which recognition of the 3\' end of the primer by either α or ε is governed by the primer stability. Thus, binding to an unstable primer is the primary mechanism for mismatch recognition during proofreading, rather than an alternative model of duplex defect recognition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号