Disease progression model

疾病进展模型
  • 文章类型: Journal Article
    事件的时间表,如症状外观或生物标志物值的变化,提供强大的特征来表征进行性疾病。了解和预测事件发生的时间对于在疾病过程早期针对个体的临床试验很重要,因为假定的治疗可能具有最强的效果。然而,以前的疾病进展模型无法估计事件之间的时间,只能提供事件变化的顺序.这里,我们引入了基于时间事件的模型(TEBM),一种新的概率模型,用于从稀疏和不规则采样的数据集中推断生物标志物事件的时间线。我们证明了TEBM在两种神经退行性疾病中的作用:阿尔茨海默氏病(AD)和亨廷顿氏病(HD)。在这两种疾病中,TEBM不仅概括了当前对事件顺序的理解,而且还提供了连续事件之间独特的新时间尺度范围。我们在这两种疾病中使用外部数据集来复制和验证这些发现。我们还证明了TEBM比当前模型有所改进;提供了独特的分层功能;并丰富了模拟临床试验,与随机选择相比,以不到一半的队列规模实现了80%的功效。TEBM的应用自然延伸到宽范围的渐进条件。
    Timelines of events, such as symptom appearance or a change in biomarker value, provide powerful signatures that characterise progressive diseases. Understanding and predicting the timing of events is important for clinical trials targeting individuals early in the disease course when putative treatments are likely to have the strongest effect. However, previous models of disease progression cannot estimate the time between events and provide only an ordering in which they change. Here, we introduce the temporal event-based model (TEBM), a new probabilistic model for inferring timelines of biomarker events from sparse and irregularly sampled datasets. We demonstrate the power of the TEBM in two neurodegenerative conditions: Alzheimer\'s disease (AD) and Huntington\'s disease (HD). In both diseases, the TEBM not only recapitulates current understanding of event orderings but also provides unique new ranges of timescales between consecutive events. We reproduce and validate these findings using external datasets in both diseases. We also demonstrate that the TEBM improves over current models; provides unique stratification capabilities; and enriches simulated clinical trials to achieve a power of 80% with less than half the cohort size compared with random selection. The application of the TEBM naturally extends to a wide range of progressive conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:阿尔茨海默病和相关痴呆(ADRD)的特征是多种进行性解剖临床变化,包括大脑中异常蛋白质的积累,脑萎缩和严重的认知障碍。了解这些变化的顺序和时间对于深入了解疾病自然史并最终允许早期诊断至关重要。然而,根据队列数据对疾病病程的变化进行建模是具有挑战性的,因为通常的时间尺度(自纳入以来的时间,实际年龄)是不合适的,并且在诊断前随访时间短的参与者的小亚样本中可以获得临床诊断时间。规避这一挑战的一个解决方案是将疾病时间定义为潜在变量。
    方法:我们开发了一种多变量混合模型方法,该方法将个体轨迹重新调整为潜伏疾病时间以描述疾病进展。与现有文献相比,我们的方法利用临床诊断信息作为部分观察和近似的参考,以指导潜在疾病时间的估计。使用Stan在贝叶斯框架中进行模型估计。我们将该方法应用于MEMENTO研究,法国多中心临床队列2186名参与者,为期5年的密集随访。重复测量源自脑脊液(CSF)的12种ADRD标记,分析脑成像和认知测试。
    结果:临床诊断前估计的潜伏疾病时间超过20年。考虑到一名70岁的妇女的特点,她受教育程度较高,并且是APOE4携带者(ADRD的主要遗传危险因素),tau蛋白积累的CSF标志物先于脑萎缩标志物5年,认知能力下降10年。然而,我们观察到个体特征可以实质性地改变这些变化的顺序和时间,特别是对于A的CSF水平[公式:见正文]。
    结论:通过利用可用的临床诊断时机信息,我们的疾病进展模型不仅将轨迹重新调整为最均匀的方式。它解释了痴呆进展中固有的残余个体间变异性,以描述根据临床诊断前几年的长期解剖临床退化。并提供有关事件顺序的临床意义信息。
    背景:clinicaltrials.gov,NCT01926249。2013年8月16日注册。
    Alzheimer\'s disease and related dementia (ADRD) are characterized by multiple and progressive anatomo-clinical changes including accumulation of abnormal proteins in the brain, brain atrophy and severe cognitive impairment. Understanding the sequence and timing of these changes is of primary importance to gain insight into the disease natural history and ultimately allow earlier diagnosis. Yet, modeling changes over disease course from cohort data is challenging as the usual timescales (time since inclusion, chronological age) are inappropriate and time-to-clinical diagnosis is available on small subsamples of participants with short follow-up durations prior to diagnosis. One solution to circumvent this challenge is to define the disease time as a latent variable.
    We developed a multivariate mixed model approach that realigns individual trajectories into the latent disease time to describe disease progression. In contrast with the existing literature, our methodology exploits the clinical diagnosis information as a partially observed and approximate reference to guide the estimation of the latent disease time. The model estimation was carried out in the Bayesian Framework using Stan. We applied the methodology to the MEMENTO study, a French multicentric clinic-based cohort of 2186 participants with 5-year intensive follow-up. Repeated measures of 12 ADRD markers stemmed from cerebrospinal fluid (CSF), brain imaging and cognitive tests were analyzed.
    The estimated latent disease time spanned over twenty years before the clinical diagnosis. Considering the profile of a woman aged 70 with a high level of education and APOE4 carrier (the main genetic risk factor for ADRD), CSF markers of tau proteins accumulation preceded markers of brain atrophy by 5 years and cognitive decline by 10 years. However we observed that individual characteristics could substantially modify the sequence and timing of these changes, in particular for CSF level of A[Formula: see text].
    By leveraging the available clinical diagnosis timing information, our disease progression model does not only realign trajectories into the most homogeneous way. It accounts for the inherent residual inter-individual variability in dementia progression to describe the long-term anatomo-clinical degradations according to the years preceding clinical diagnosis, and to provide clinically meaningful information on the sequence of events.
    clinicaltrials.gov, NCT01926249. Registered on 16 August 2013.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    阿尔茨海默病(AD)是一种复杂的痴呆形式,由于其高表型变异性,它的诊断和监测可能是相当具有挑战性的。生物标志物在AD诊断和监测中起着至关重要的作用。但解释这些生物标志物可能是有问题的,因为它们的空间和时间异质性。因此,研究人员越来越多地转向基于成像的生物标志物,这些生物标志物采用数据驱动的计算方法来检查AD的异质性.在这篇全面的综述文章中,我们的目标是为卫生专业人员提供数据驱动的计算方法在研究AD异质性和规划未来研究方向的过去应用的全面视图。我们首先定义并提供对不同类别异质性分析的基本见解,包括空间异质性,时间异质性,和时空异质性。然后,我们仔细研究了22篇与空间异质性有关的文章,14篇与时间异质性有关的文章,和五篇关于时空异质性的文章,强调这些策略的优势和局限性。此外,我们讨论了理解AD亚型及其临床表现的空间异质性的重要性,异常排序和AD分期的生物标志物,AD时空异质性分析的最新进展,以及组学数据整合在推进AD患者个性化诊断和治疗中的新兴作用。通过强调理解AD异质性的重要性,我们希望促进该领域的进一步研究,以促进针对AD患者的个性化干预措施的发展.
    Alzheimer\'s disease (AD) is a complex form of dementia and due to its high phenotypic variability, its diagnosis and monitoring can be quite challenging. Biomarkers play a crucial role in AD diagnosis and monitoring, but interpreting these biomarkers can be problematic due to their spatial and temporal heterogeneity. Therefore, researchers are increasingly turning to imaging-based biomarkers that employ data-driven computational approaches to examine the heterogeneity of AD. In this comprehensive review article, we aim to provide health professionals with a comprehensive view of past applications of data-driven computational approaches in studying AD heterogeneity and planning future research directions. We first define and offer basic insights into different categories of heterogeneity analysis, including spatial heterogeneity, temporal heterogeneity, and spatial-temporal heterogeneity. Then, we scrutinize 22 articles relating to spatial heterogeneity, 14 articles relating to temporal heterogeneity, and five articles relating to spatial-temporal heterogeneity, highlighting the strengths and limitations of these strategies. Furthermore, we discuss the importance of understanding spatial heterogeneity in AD subtypes and their clinical manifestations, biomarkers for abnormal orderings and AD stages, the recent advancements in spatial-temporal heterogeneity analysis for AD, and the emerging role of omics data integration in advancing personalized diagnosis and treatment for AD patients. By emphasizing the significance of understanding AD heterogeneity, we hope to stimulate further research in this field to facilitate the development of personalized interventions for AD patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    提出了一种基于DaTscan图像的早期帕金森病(PD)疾病进展模型。该模型有两个新颖的方面:第一,该模型是完全耦合在两个caudates和putamina。第二,该模型使用称为模型镜像对称(MMS)的新约束。完整的贝叶斯分析,使用共轭先验进行塌陷的吉布斯采样,用于获取模型参数的后验样本。该模型识别PD进展亚型并揭示PD进展的新的快速模式。
    This paper proposes a disease progression model for early stage Parkinson\'s Disease (PD) based on DaTscan images. The model has two novel aspects: first, the model is fully coupled across the two caudates and putamina. Second, the model uses a new constraint called model mirror symmetry (MMS). A full Bayesian analysis, with collapsed Gibbs sampling using conjugate priors, is used to obtain posterior samples of the model parameters. The model identifies PD progression subtypes and reveals novel fast modes of PD progression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    预测阿尔茨海默病(AD)的进展对患者的早期干预和生活质量的改善具有非常重要的作用。认知量表通常用于评估患者的状态。然而,由于AD发病机制的复杂性和AD的个体差异,预测AD进展具有挑战性。本文提出了一种新颖的耦合模型(P-E模型),该模型考虑了AD患者的生理退化和情绪状态转变过程。我们在合成数据上进行了实验,以验证所提出的P-E模型的有效性。接下来,我们对来自阿尔茨海默病神经影像学倡议的134名受试者进行了超过10次随访的实验。P-E模型的预测性能明显优于其他最先进的方法,得到的均方误差为7.137±0.035。实验结果表明,P-E模型能很好地表征AD认知数据的非单调性,对具有个体差异的时间序列数据也能具有良好的预测能力。
    The prediction of Alzheimer\'s disease (AD) progression plays a very important role in the early intervention of patients and the improvement of life quality. Cognitive scales are commonly used to assess the patient\'s status. However, due to the complicated pathogenesis of AD and the individual differences in AD, the prediction of AD progression is challenging. This paper proposes a novel coupling model (P-E model) that takes into account the processes of physiological degradation and emotional state transition of AD patients. We conduct experiments on synthetic data to validate the effectiveness of the proposed P-E model. Next, we conduct experiments on 134 subjects with more than 10 follow-ups from the Alzheimer\'s Disease Neuroimaging Initiative. The prediction performance of the P-E model is significantly better than other state-of-the-art methods, which achieves the mean squared error of 7.137 ± 0.035. The experimental results show that the P-E model can well characterize the non-monotonic properties of AD cognitive data and can also have a good predictive ability for time series data with individual differences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在分析临床试验结果时,重复测量的混合模型(MMRM)无处不在。然而,这些模型中固定效应结构的线性在很大程度上限制了它们在估计治疗效应方面的应用,这些效应被定义为对结果量表的效应的线性组合.在某些情况下,治疗效果的替代量化可能更合适。在进行性疾病中,例如,人们可能想评估一种药物是否具有累积效应,从而导致随着时间的推移疗效增加,或者它是否减缓了疾病的时间进展。本文介绍了一类非线性混合效应模型,称为重复测量的级数模型(PMRM),基于MMRM的分类时间参数化的连续时间扩展,能够估计新类型的治疗效果,包括减缓或延缓疾病进展的措施。与治疗效果的常规估计相比,单位与结果量表的单位相匹配(例如,认知量表上的2分益处),基于时间的治疗效果可以提供更好的可解释性和临床意义(例如,认知衰退进展延迟6个月)。PMRM类包括常规使用的MMRM和相关模型,用于纵向数据分析,以及以前提出的疾病进展模型的变体作为特殊情况。使用来自阿尔茨海默病临床试验的模拟和历史数据,说明了PMRM框架的潜力,这些数据具有不同类型的人工模拟治疗效果。与常规模型相比,表明PMRM可以提供显著增加的能力来检测疾病改善治疗效果,其中益处随着治疗持续时间而增加。
    Mixed models for repeated measures (MMRMs) are ubiquitous when analyzing outcomes of clinical trials. However, the linearity of the fixed-effect structure in these models largely restrict their use to estimating treatment effects that are defined as linear combinations of effects on the outcome scale. In some situations, alternative quantifications of treatment effects may be more appropriate. In progressive diseases, for example, one may want to estimate if a drug has cumulative effects resulting in increasing efficacy over time or whether it slows the time progression of disease. This article introduces a class of nonlinear mixed-effects models called progression models for repeated measures (PMRMs) that, based on a continuous-time extension of the categorical-time parametrization of MMRMs, enables estimation of novel types of treatment effects, including measures of slowing or delay of the time progression of disease. Compared to conventional estimates of treatment effects where the unit matches that of the outcome scale (eg, 2 points benefit on a cognitive scale), the time-based treatment effects can offer better interpretability and clinical meaningfulness (eg, 6 months delay in progression of cognitive decline). The PMRM class includes conventionally used MMRMs and related models for longitudinal data analysis, as well as variants of previously proposed disease progression models as special cases. The potential of the PMRM framework is illustrated using both simulated and historical data from clinical trials in Alzheimer\'s disease with different types of artificially simulated treatment effects. Compared to conventional models it is shown that PMRMs can offer substantially increased power to detect disease-modifying treatment effects where the benefit is increasing with treatment duration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人们在没有正式诊断或管理的情况下长期生活在糖尿病前期/早期糖尿病中。进展的异质性以及与不完整数据相关的电子健康记录不足,离散事件,和不规则的事件间隔使得识别糖尿病前期和糖尿病进展的临界点具有挑战性。
    我们利用了2005年至2016年来自中国大型区域医疗保健交付网络的9298名2型糖尿病或前驱糖尿病患者的纵向电子健康记录。我们优化了基于生成马尔可夫-贝叶斯的模型,以生成5000个合成疾病轨迹。合成数据由内分泌学家手动审查。
    我们使用锚信息为2型糖尿病建立了优化的生成进展模型,以减少在模型的第三层中学习的参数数量,从[公式:见文本]减少到[公式:见文本],其中[公式:见正文]是临床发现的数量,[公式:见正文]是并发症的数量,[公式:见文本]是锚点的数量。基于这个模型,我们推断进展阶段之间的关系,并发症类别的发作,以及使用电子健康记录在2型糖尿病整个进展过程中的相关诊断。
    我们的研究结果表明,55.3%的单一并发症和31.8%的并发症模式可以早期预测和适当管理,以潜在的延迟(因为它是一种进行性疾病)或预防(通过改变生活方式,防止患者发展/引发糖尿病摆在首位)。
    由慢性疾病进展模型生成的完整2型糖尿病患者轨迹可以应对缺乏所需纵向时间框架的现实证据,同时促进人群健康管理。
    People live a long time in pre-diabetes/early diabetes without a formal diagnosis or management. Heterogeneity of progression coupled with deficiencies in electronic health records related to incomplete data, discrete events, and irregular event intervals make identification of pre-diabetes and critical points of diabetes progression challenging.
    We utilized longitudinal electronic health records of 9298 patients with type 2 diabetes or prediabetes from 2005 to 2016 from a large regional healthcare delivery network in China. We optimized a generative Markov-Bayesian-based model to generate 5000 synthetic illness trajectories. The synthetic data were manually reviewed by endocrinologists.
    We build an optimized generative progression model for type 2 diabetes using anchor information to reduce the number of parameters learning in the third layer of the model from [Formula: see text] to [Formula: see text], where [Formula: see text] is the number of clinical findings, [Formula: see text] is the number of complications, [Formula: see text] is the number of anchors. Based on this model, we infer the relationships between progression stages, the onset of complication categories, and the associated diagnoses during the whole progression of type 2 diabetes using electronic health records.
    Our findings indicate that 55.3% of single complications and 31.8% of complication patterns could be predicted early and managed appropriately to potentially delay (as it is a progressive disease) or prevented (by lifestyle modifications that keep patient from developing/triggering diabetes in the first place).
    The full type 2 diabetes patient trajectories generated by the chronic disease progression model can counter a lack of real-world evidence of desired longitudinal timeframe while facilitating population health management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    粘多糖贮积症IIIA(MPSIIIA)是一种罕见的遗传性疾病,困扰儿童并导致神经认知变性。我们开发了MPSIIIA的贝叶斯疾病进展模型(DPM),该模型表征了该疾病的认知增长和下降模式。DPM是一个重复测量模型,包含非线性发展轨迹和形状不变的随机效应。这种方法量化了MPSIIIA的认知发展模式,并解决了生物年龄的差异,随访时间,和自然史受试者的临床结果。DPM可用于临床试验以估计相对于自然史治疗的疾病进展减缓的百分比。仿真表明,DPM相对于替代分析在功率方面提供了实质性改进。
    Mucopolysaccaridosis IIIA (MPS IIIA) is a rare genetic disease that afflicts children and leads to neurocognitive degeneration. We develop a Bayesian disease progression model (DPM) of MPS IIIA that characterizes the pattern of cognitive growth and decline in this disease. The DPM is a repeated measures model that incorporates a nonlinear developmental trajectory and shape-invariant random effects. This approach quantifies the pattern of cognitive development in MPS IIIA and addresses differences in biological age, length of follow-up, and clinical outcomes across natural history subjects. The DPM can be used in clinical trials to estimate the percent slowing in disease progression for treatment relative to natural history. Simulations demonstrate that the DPM provides substantial improvements in power relative to alternative analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在药物开发中使用疾病进展模型(DPM)已在治疗领域广泛采用,作为整合先前获得的疾病知识以阐明新型疗法或疫苗对疾病进程的影响的方法。从而量化药物开发计划不同阶段的潜在临床益处。本文简要概述了DPM和数据类型的演变,分析方法,以及定量临床药理学家在使用中出现的应用。它还提供了这些模型如何在多个治疗领域和不同开发阶段做出明智的决策和临床试验设计的示例。它简要描述了利用新兴数据源的DPM的潜在新应用,利用新的分析技术,并讨论面临的新挑战,例如需要描述多个端点,快速模型开发,基于机器学习的分析应用,以及高维和现实世界数据的使用。还提供了DPM作为社区维护的专家系统的持续发展考虑因素。
    The use of Disease progression models (DPMs) in Drug Development has been widely adopted across therapeutic areas as a method for integrating previously obtained disease knowledge to elucidate the impact of novel therapeutics or vaccines on disease course, thus quantifying the potential clinical benefit at different stages of drug development programs. This paper provides a brief overview of DPMs and the evolution in data types, analytic methods, and applications that have occurred in their use by Quantitive Clinical Pharmacologists. It also provides examples of how these models have informed decisions and clinical trial design across several therapeutic areas and at various stages of development. It briefly describes potential new applications of DPMs utilizing emerging data sources, and utilizing new analytic techniques, and discuss new challenges faced such as requiring description of multiple endpoints, rapid model development, application of machine learning-based analytics, and use of high dimensional and real-world data. Considerations for the continued evolution future of DPMs to serve as community-maintained expert systems are also provided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已经提出了几种用于遗传性额颞叶痴呆的CSF和血液生物标志物,包括那些反映神经轴突丢失(神经丝轻链和磷酸化神经丝重链),突触功能障碍[神经元五聚素2(NPTX2)],星形胶质细胞增生(胶质纤维酸性蛋白)和补体激活(C1q,C3b).确定生物标志物在疾病过程中异常的顺序可以促进疾病分期,并有助于识别前驱或早期额颞叶痴呆的突变携带者。随着药物试验的出现,这一点尤其重要。我们旨在使用来自基因额颞叶痴呆倡议(GENFI)的横断面数据,对症状前和症状性遗传性额颞叶痴呆的生物标志物异常序列进行建模。纵向队列研究。两百七十五名症状前和127名症状性基因突变携带者,C9orf72或MAPT,以及247个非运营商,基于一种或多种上述生物标志物的可用性从GENFI队列中选择。9名症状前携带者在样本收集后18个月内出现症状(“转化者”)。使用区分性基于事件的建模(DEBM)对整个组以及使用共同初始化的DEBM对每个遗传亚组的生物标志物异常序列进行建模。这些模型以数据驱动的方式估计概率生物标志物异常,并且不依赖于先前的诊断信息或生物标志物截止点。使用交叉验证,随后根据受试者在疾病进展时间线上的位置为其分配疾病分期.CSFNPTX2是第一个异常的生物标志物,其次是血液和脑脊液神经丝轻链,血液磷酸化神经丝重链,血胶质纤维酸性蛋白,最后是CSFC3b和C1q。生物标志物排序在遗传亚组之间没有显着差异,但C9orf72和MAPT组的不确定性高于GRN.估计的疾病分期可以区分有症状的携带者和非携带者,曲线下面积分别为0.84(95%置信区间0.80-0.89)和0.90(0.86-0.94)。区分转化者和非转化性症状前携带者的曲线下面积为0.85(0.75-0.95)。我们的遗传性额颞叶痴呆的数据驱动模型显示,NPTX2和神经丝轻链是所选生物标志物中最早发生变化的。进一步的研究应该调查它们作为药物试验候选选择工具的效用。该模型能够准确估计个体疾病分期,可以改善患者分层并跟踪治疗干预措施的疗效。
    Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection (\'converters\'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model\'s ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号