Digital microfluidics

数字微流体
  • 文章类型: Journal Article
    在性侵犯中收集的法医案件样本通常包含来自多个来源的DNA,这使得短串联重复(STR)分析复杂化。这些样品通常被送到实验室以在分析之前从精子和非精子来源分离DNA。这里,报告了使用数字微流体(DMF)的这些步骤的自动化和小型化,最终可以在实验室外处理性侵犯样本,在需要的时候。当应用于阴道拭子样品收集到12小时后(PC),新方法识别单源(男性)STR谱.当应用于24-72小时PC收集的样品时,该方法识别混合的STR配置文件,建议改进的空间和/或数据反卷积的潜力。总之,一个自动化的,展示了用于分离性侵犯样品中所含DNA的小型化样品预处理方法。这种使用DMF的自动化处理,特别是当与快速DNA分析相结合时,有可能被用于处理医院的性侵犯样本,警察局,和实验室以外的其他地方。
    Forensic case samples collected in sexual assaults typically contain DNA from multiple sources, which complicates short-tandem repeat (STR) profiling. These samples are typically sent to a laboratory to separate the DNA from sperm and non-sperm sources prior to analysis. Here, the automation and miniaturization of these steps using digital microfluidics (DMF) is reported, which may eventually enable processing sexual assault samples outside of the laboratory, at the point of need. When applied to vaginal swab samples collected up to 12 h post-coitus (PC), the new method identifies single-source (male) STR profiles. When applied to samples collected 24-72 h PC, the method identifies mixed STR profiles, suggesting room for improvement and/or potential for data deconvolution. In sum, an automated, miniaturized sample pre-processing method for separating the DNA contained in sexual assault samples is demonstrated. This type of automated processing using DMF, especially when combined with Rapid DNA Analysis, has the potential to be used for processing of sexual assault samples in hospitals, police offices, and other locations outside of the laboratory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着数字微流控(DMF)芯片中像素阵列的不断扩展,精确的液滴控制已经成为一个需要详细考虑的关键问题。本文提出了一种新型的基于电容的薄膜晶体管DMF液滴传感系统。所提出的电路具有独特的内部和外部双像素电极结构,集成液滴驱动和传感功能。在液滴感测期间,放电仅发生在内部电极处,有效解决现有传感电路中的液滴扰动。该电路采用薄膜晶体管的新型扇形结构。仿真结果表明,它可以提供48V的像素电压,并显示去离子水和硅油之间超过10V的传感电压差,说明其在液滴驱动和精确传感的熟练程度。还验证了电路的阈值电压漂移和温度的稳定性。该设计专为集成到有源矩阵电介质上电润湿(AM-EWOD)芯片中,提供了一种新颖的方法来实现液滴的精确闭环控制。
    With the continuous expansion of pixel arrays in digital microfluidics (DMF) chips, precise droplet control has emerged as a critical issue requiring detailed consideration. This paper proposes a novel capacitance-based droplet sensing system for thin-film transistor DMF. The proposed circuit features a distinctive inner and outer dual-pixel electrode structure, integrating droplet driving and sensing functionalities. Discharge occurs exclusively at the inner electrode during droplet sensing, effectively addressing droplet perturbation in existing sensing circuits. The circuit employs a novel fan-shaped structure of thin-film transistors. Simulation results show that it can provide a 48 V pixel voltage and demonstrate a sensing voltage difference of over 10 V between deionized water and silicone oil, illustrating its proficiency in droplet driving and accurate sensing. The stability of threshold voltage drift and temperature was also verified for the circuit. The design is tailored for integration into active matrix electrowetting-on-dielectric (AM-EWOD) chips, offering a novel approach to achieve precise closed-loop control of droplets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PD1/PD-L1检查点抑制剂处于癌症免疫疗法的最前沿。然而,总体反应率仍然只有10-30%。即使在最初的响应者中,耐药性经常发生,这可能导致在与致命疾病的比赛中长期使用徒劳的治疗。密切监测患者免疫反应的关键指标是理想的,如循环PD-L1水平。传统的PD-L1检测方法,如ELISA,灵敏度有限,依赖核心实验室设施,防止其用于定期监测。电化学传感器作为护理点工具的有吸引力的候选者存在,然而,在单一平台中简化多个流程仍然是一个挑战。为了克服这一挑战,这项工作将电化学传感器阵列集成到数字微流体设备中,以结合其独特的优点,因此可溶性PD-L1(sPD-L1)分子可以以编程和自动化的方式快速检测。这个新平台具有微型电化学传感器阵列,用导电3D矩阵修改,并且可以检测低至1pg/mL的sPD-L1,具有高特异性。传感器还具有期望的可重复性,并且可以在不同的天获得可再现的结果。为了证明该设备处理更复杂的生物流体的功能,我们使用该设备直接检测人乳腺癌细胞系在培养基中分泌的sPD-L1分子,观察到信号与对照实验相比增加了2倍。这个新平台有望密切监测人体生理液中的sPD-L1水平,以评估PD-1/PD-L1免疫疗法的疗效。
    PD1/PD-L1 checkpoint inhibitors are at the forefront of cancer immunotherapies. However, the overall response rate remains only 10-30%. Even among initial responders, drug resistance often occurs, which can lead to prolonged use of a futile therapy in the race with the fatal disease. It would be ideal to closely monitor key indicators of patients\' immune responsiveness, such as circulating PD-L1 levels. Traditional PD-L1 detection methods, such as ELISA, are limited in sensitivity and rely on core lab facilities, preventing their use for the regular monitoring. Electrochemical sensors exist as an attractive candidate for point-of-care tool, yet, streamlining multiple processes in a single platform remains a challenge. To overcome this challenge, this work integrated electrochemical sensor arrays into a digital microfluidic device to combine their distinct merits, so that soluble PD-L1 (sPD-L1) molecules can be rapidly detected in a programmed and automated manner. This new platform featured microscale electrochemical sensor arrays modified with electrically conductive 3D matrix, and can detect as low as 1 pg/mL sPD-L1 with high specificity. The sensors also have desired repeatability and can obtain reproducible results on different days. To demonstrate the functionality of the device to process more complex biofluids, we used the device to detect sPD-L1 molecules secreted by human breast cancer cell line in culture media directly and observed 2X increase in signal compared with control experiment. This novel platform holds promise for the close monitoring of sPD-L1 level in human physiological fluids to evaluate the efficacy of PD-1/PD-L1 immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    准确评估细菌的表型和基因型特征可以促进对所有耐药因子的全面分类,从而更好地了解抗生素的耐药性。然而,目前的方法主要集中在不同菌落的个体表型或基因型。这里,据报道,一种基于数字微流控的自动测定单抗生素耐药细菌的全基因组测序,实现抗生素耐药菌株的基因型和表型分析(Digital-GPA)。Digital-GPA可以有效地分离和测序由荧光D-氨基酸(FDAA)标记照亮的抗生素抗性细菌,产生高质量的单细胞扩增基因组(SAGs)。这使得能够识别次要和主要突变,用独特的抗性机制精确定位子。Digital-GPA可以直接处理临床样品,无需细菌培养即可检测和测序耐药病原体,随后提供抗生素易感性的遗传概况,承诺加快分析难以培养或生长缓慢的细菌。总的来说,Digital-GPA通过以单细胞分辨率提供准确和全面的抗生素耐药性分子谱,为抗生素耐药性分析开辟了一条新途径。
    Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA). Digital-GPA can efficiently isolate and sequence antibiotic-resistant bacteria illuminated by fluorescent D-amino acid (FDAA)-labeling, producing high-quality single-cell amplified genomes (SAGs). This enables identifications of both minor and major mutations, pinpointing substrains with distinctive resistance mechanisms. Digital-GPA can directly process clinical samples to detect and sequence resistant pathogens without bacterial culture, subsequently provide genetic profiles of antibiotic susceptibility, promising to expedite the analysis of hard-to-culture or slow-growing bacteria. Overall, Digital-GPA opens a new avenue for antibiotic resistance analysis by providing accurate and comprehensive molecular profiles of antibiotic resistance at single-cell resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    急性心肌梗死(AMI)在其发展阶段的早期和快速诊断是至关重要的,因为它的高病死率。心型脂肪酸结合蛋白(h-FABP)是定量诊断AMI的理想生物标志物。超越传统的标记,如肌红蛋白,肌酸磷酸激酶-MB,和肌钙蛋白的敏感性,特异性,和预后价值。为了获得诊断和预后信息,h-FABP的精确和完全定量测量是必不可少的,通常通过免疫吸附测定如酶联免疫吸附测定来实现。然而,这种方法有几个限制,包括延长的检测时间,复杂的分析程序,需要熟练的技术人员,以及实施自动检测的挑战。这项研究介绍了一种新型的生物传感器,利用聚集诱导发射纳米粒子(AIENP)并与数字微流体(DMF)工作站集成,为敏感者设计的,快速,和自动检测低容量血清样品中的h-FABP。AIENP和纳米级磁珠作为捕获颗粒和荧光探针,分别与抗h-FABP抗体共价连接。该方法基于夹心免疫测定,并在全自动DMF工作站上进行,测定时间为15分钟。我们证明了在最佳条件下使用该生物传感器测定血清样品中的h-FABP,检出限为0.14ng/mL。此外,在临床血清检测中,使用该生物传感器与商业化的ELISA试剂盒之间获得了极好的相关性(R2=0.9536,n=50)。这些结果表明,我们灵活可靠的生物传感器适合直接集成到临床诊断中。它有望成为AMI患者早期发现和筛查测试以及预后评估的有前途的诊断工具。
    Early and rapid diagnostic of acute myocardial infarction (AMI) during its developing stage is crucial due to its high fatality rate. Heart-type fatty acid binding protein (h-FABP) is an ideal biomarker for the quantitative diagnosis of AMI, surpassing traditional markers such as myoglobin, creatine phosphokinase-MB, and troponin in terms of sensitivity, specificity, and prognostic value. To obtain diagnostic and prognostic information, a precise and fully quantitative measurement of h-FABP is essential, typically achieved through an immunosorbent assay like the enzyme-linked immunosorbent assay. Nevertheless, this method has several limitations, including extended detection time, complex assay procedures, the necessity for skilled technicians, and challenges in implementing automated detection. This research introduces a novel biosensor, utilizing aggregation-induced emission nanoparticles (AIENPs) and integrated with a digital microfluidic (DMF) workstation, designed for the sensitive, rapid, and automated detection of h-FABP in low-volume serum samples. AIENPs and magnetic beads in nanoscale were served as the capture particles and the fluorescent probe, which were linked covalently to anti-h-FABP antibodies respectively. The approach was based on a sandwich immunoassay and performed on a fully automated DMF workstation with assay time by 15 min. We demonstrated the determination of h-FABP in serum samples with detection limit of 0.14 ng/mL using this biosensor under optimal condition. Furthermore, excellent correlations (R2 = 0.9536, n = 50) were obtained between utilizing this biosensor and commercialized ELISA kits in clinical serum detecting. These results demonstrate that our flexible and reliable biosensor is suitable for direct integration into clinical diagnostics, and it is expected to be promising diagnostic tool for early detection and screening tests as well as prognosis evaluation for AMI patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    幽门螺杆菌(H.幽门螺杆菌)感染与胃炎等胃病密切相关,溃疡,和癌症,影响了世界一半以上的人口。建立一个快速、精确,幽门螺杆菌诊断的自动化平台是一个迫切的临床需求,将显著有利于治疗干预。重组酶聚合酶扩增(RPA)-CRISPR由于其快速检测能力,最近成为一种有前途的分子诊断方法。高特异性,和温和的反应条件。在这项工作中,我们在数字微流体(DMF)系统上调整了RPA-CRISPR检测方法,用于幽门螺杆菌的自动化检测和基因分型.该系统可以在30min内实现跨不同样本的幽门螺杆菌核苷酸保守基因(ureB)和毒力基因(cagA和vacA)的多靶点并行检测,表现出10个拷贝/rxn的检测极限和没有假阳性。我们进一步对80份临床唾液样本进行了测试,并将结果与实时定量聚合酶链反应的结果进行了比较。证明了RPA-CRISPR/DMF方法的100%诊断灵敏度和特异性。通过在单个芯片上自动化检测过程,DMF系统可以大大减少试剂和样品的使用,尽量减少交叉污染的影响,缩短反应时间,具有额外的好处,即由于手动操作而失去实验失败/不一致的机会。DMF系统与RPA-CRISPR检测方法可用于幽门螺杆菌的早期检测和基因分型,具有较高的敏感性和特异性。并有可能成为通用的分子诊断平台。
    Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world\'s population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    正在进行的标记为COVID-19的病毒爆发正在各州迅速蔓延,并对公共卫生构成了巨大威胁。在人群中快速鉴定病毒对隔离个体和打破传播链起到至关重要的作用,除了启动适当的治疗程序。这里,我们讨论了一种电介质上电润湿(EWOD)技术,该技术使用微处理器控制的电极阵列将液滴携带的可能感染的样品与一滴试剂合并以进行测试过程。使用照相机对在液滴的混合过程期间发生的颜色变化进行成像。
    The ongoing viral outbreak labeled COVID-19 is spreading rapidly across states and is posing a great threat to public health. Rapid identification of the virus in the population plays a crucial role in isolating the individual and breaking the transmission chain, apart from initiating an appropriate treatment procedure. Here, we discuss an electrowetting-on-dielectric (EWOD) technology that uses a microprocessor-controlled electrode array to merge a possibly infected sample carried by a liquid drop with a drop of a reagent to carry out the testing process. Changes in color occurring during the mixing process of the drops are imaged using a camera.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质作为细胞的关键成分负责大多数细胞过程。灵敏而有效的蛋白质检测能够更准确和全面地研究细胞表型和生命活动。这里,具有高多路复用的蛋白质测序方法,高吞吐量,高细胞利用率,并提出了基于数字微流体(DMF-Protein-seq)的集成,它通过DNA标记的抗体将蛋白质信息转换为DNA测序读数,并用独特的细胞条形码标记单细胞。在184电极DMF-Protein-seq系统中,每次实验运行同时检测到约1800个细胞。利用低吸附疏水表面和污染物隔离的反应空间的数字微流体装置支持高细胞利用率(>90%)和高映射读数(>90%),输入细胞范围为140至2000。该系统首次利用DMF芯片上的拆分和池策略来克服细胞分析吞吐量中的DMF平台限制,并取代传统上繁琐的台式组合条形码。在蛋白质分析中具有高效率和灵敏度的优势,该系统为基于单细胞水平的蛋白质表达进行细胞分类和药物监测提供了巨大的潜力。
    Proteins as crucial components of cells are responsible for the majority of cellular processes. Sensitive and efficient protein detection enables a more accurate and comprehensive investigation of cellular phenotypes and life activities. Here, a protein sequencing method with high multiplexing, high throughput, high cell utilization, and integration based on digital microfluidics (DMF-Protein-seq) is proposed, which transforms protein information into DNA sequencing readout via DNA-tagged antibodies and labels single cells with unique cell barcodes. In a 184-electrode DMF-Protein-seq system, ≈1800 cells are simultaneously detected per experimental run. The digital microfluidics device harnessing low-adsorbed hydrophobic surface and contaminants-isolated reaction space supports high cell utilization (>90%) and high mapping reads (>90%) with the input cells ranging from 140 to 2000. This system leverages split&pool strategy on the DMF chip for the first time to overcome DMF platform restriction in cell analysis throughput and replace the traditionally tedious bench-top combinatorial barcoding. With the benefits of high efficiency and sensitivity in protein analysis, the system offers great potential for cell classification and drug monitoring based on protein expression at the single-cell level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电介质上电润湿(EWOD),公认为最成功的电液滴驱动方法,在不同的应用中至关重要,从热管理到微流体和集水。尽管取得了重大进展,实现可重复性仍然具有挑战性,高速,在超疏水表面上基于EWOD的液滴操纵中,电路简单。此外,其有效操作通常需要电极阵列和复杂的电路控制。这里,我们报道了在轨道EWOD(OEW)超疏水表面上新观察到的液滴操纵现象。由于轨道上产生的不对称电润湿力,灵活和通用的液滴操纵促进OEW。我们证明了在超疏水表面上的OEW液滴操纵表现出更高的速度(快5倍),增强功能(反重力),和操纵不同的液体(酸,基地,盐,有机,例如,甲基蓝,人造血液)无污染,1000次试验后耐久性好。我们设想使用OEW的这种强大的液滴操纵策略将为涉及液滴的各种过程提供有价值的平台,从微流体设备到可控的化学反应。本研究中显示的先前未报道的液滴操纵现象和控制策略可能会升级基于EWOD的微流体,防雾,防冰,除尘,和超越。本文受版权保护。保留所有权利。
    Electrowetting-on-dielectric (EWOD), recognized as the most successful electrical droplet actuation method, is essential in diverse applications, ranging from thermal management to microfluidics and water harvesting. Despite significant advances, it remains challenging to achieve repeatability, high speed, and simple circuitry in EWOD-based droplet manipulation on superhydrophobic surfaces. Moreover, its efficient operation typically requires electrode arrays and sophisticated circuit control. Here, a newly observed droplet manipulation phenomenon on superhydrophobic surfaces with orbital EWOD (OEW) is reported. Due to the asymmetric electrowetting force generated on the orbit, flexible and versatile droplet manipulation is facilitated with OEW. It is demonstrated that OEW droplet manipulation on superhydrophobic surfaces exhibits higher speed (up to 5 times faster), enhanced functionality (antigravity), and manipulation of diverse liquids (acid, base, salt, organic, e.g., methyl blue, artificial blood) without contamination, and good durability after 1000 tests. It is envisioned that this robust droplet manipulation strategy using OEW will provide a valuable platform for various processes involving droplets, spanning from microfluidic devices to controllable chemical reactions. The previously unreported droplet manipulation phenomenon and control strategy shown here can potentially upgrade EWOD-based microfluidics, antifogging, anti-icing, dust removal, and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:灵敏,快速的抗原检测对于传染病的诊断和治疗至关重要,但是包括基于化学发光的测定的常规ELISA的灵敏度有限并且需要许多操作步骤。荧光免疫测定是快速和方便的,但通常显示有限的灵敏度和动态范围。
    结果:为了满足需求,在数字微流体(DMF)平台上开发了一种基于珠子的定量的聚集诱导发射荧光(AIEgens)增强免疫荧光测定。制造了带有小电极的便携式DMF装置和芯片,能够在100nL内操纵液滴并提高反应效率。合成了具有高荧光和光稳定性的AIEgen纳米颗粒(NPs),以提高测试灵敏度和检测范围。AIEgen探测器的整合,透明DMF芯片设计,以及作为捕获剂的大磁珠(10μm)可以快速,直接地获取图像并对测试结果进行信号计算。通过SARS-CoV-2核衣壳(N)蛋白的即时定量证明了该平台的性能。在25分钟内,使用<1μL样品可以实现5.08pgmL-1的检测限和8.91pgmL-1的定量限。该系统在宽动态范围(10-105pgmL-1)内显示出高重现性,变异系数范围为2.6%至9.8%。
    结论:如此迅速,在DMF平台上进行灵敏的AIEgens增强免疫荧光测定显示出简化的反应步骤和改进的性能,在研究和临床应用中提供对不同生物标志物的小容量即时测试的见解。
    BACKGROUND: Sensitive and rapid antigen detection is critical for the diagnosis and treatment of infectious diseases, but conventional ELISAs including chemiluminescence-based assays are limited in sensitivity and require many operation steps. Fluorescence immunoassays are fast and convenient but often show limited sensitivity and dynamic range.
    RESULTS: To address the need, an aggregation-induced emission fluorgens (AIEgens) enhanced immunofluorescent assay with beads-based quantification on the digital microfluidic (DMF) platform was developed. Portable DMF devices and chips with small electrodes were fabricated, capable of manipulating droplets within 100 nL and boosting the reaction efficiency. AIEgen nanoparticles (NPs) with high fluorescence and photostability were synthesized to enhance the test sensitivity and detection range. The integration of AIEgen probes, transparent DMF chip design, and the large magnetic beads (10 μm) as capture agents enabled rapid and direct image-taking and signal calculation of the test result. The performance of this platform was demonstrated by point-of-care quantification of SARS-CoV-2 nucleocapsid (N) protein. Within 25 min, a limit of detection of 5.08 pg mL-1 and a limit of quantification of 8.91 pg mL-1 can be achieved using <1 μL sample. The system showed high reproducibility across the wide dynamic range (10-105 pg mL-1), with the coefficient of variance ranging from 2.6% to 9.8%.
    CONCLUSIONS: This rapid, sensitive AIEgens-enhanced immunofluorescent assay on the DMF platform showed simplified reaction steps and improved performance, providing insight into the small-volume point-of-care testing of different biomarkers in research and clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号