Dendritic spines

树枝状棘
  • 文章类型: Journal Article
    树突棘的形态,大多数兴奋性突触的突触后室,决定性地调节神经元回路的功能,从与脊柱密度或形态改变相关的人脑疾病中也可以看出。肌动蛋白丝(F-肌动蛋白)形成棘的骨架,和许多肌动蛋白结合蛋白(ABP)与成熟棘的细胞骨架形成有关。相反,关于控制从未成熟棘的无分支F-肌动蛋白到复合体的重组的机制知之甚少,成熟棘的高度分枝的细胞骨架。这里,我们证明了环化酶相关蛋白1(CAP1)和CAP2基因失活后海马神经元的脊柱成熟受损,但不是单独的CAP1或CAP2.我们发现了一个类似的脊柱成熟缺陷在过度激活倒置2(INF2),无分支的F-肌动蛋白的核子,具有迄今未知的突触功能。虽然INF2过度激活未能改变CAP缺陷神经元的脊柱密度或形态,INF2失活在很大程度上挽救了他们的脊柱缺陷。根据我们的数据,我们得出结论,CAPs抑制INF2以诱导脊柱成熟。由于我们以前表明CAPs促进cofilin1介导的成熟棘细胞骨架重塑,我们认为它们是一种分子开关,可以控制从丝状类棘到成熟棘的转变。
    The morphology of dendritic spines, the postsynaptic compartment of most excitatory synapses, decisively modulates the function of neuronal circuits as also evident from human brain disorders associated with altered spine density or morphology. Actin filaments (F-actin) form the backbone of spines, and a number of actin-binding proteins (ABP) have been implicated in shaping the cytoskeleton in mature spines. Instead, only little is known about the mechanisms that control the reorganization from unbranched F-actin of immature spines to the complex, highly branched cytoskeleton of mature spines. Here, we demonstrate impaired spine maturation in hippocampal neurons upon genetic inactivation of cyclase-associated protein 1 (CAP1) and CAP2, but not of CAP1 or CAP2 alone. We found a similar spine maturation defect upon overactivation of inverted formin 2 (INF2), a nucleator of unbranched F-actin with hitherto unknown synaptic function. While INF2 overactivation failed in altering spine density or morphology in CAP-deficient neurons, INF2 inactivation largely rescued their spine defects. From our data we conclude that CAPs inhibit INF2 to induce spine maturation. Since we previously showed that CAPs promote cofilin1-mediated cytoskeletal remodeling in mature spines, we identified them as a molecular switch that control transition from filopodia-like to mature spines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    突触传递的可塑性是学习和记忆的基础。它伴随着突触密度和大小的变化,统称为结构可塑性。因此,理解结构可塑性的机制对于理解突触可塑性的机制至关重要。在这一章中,我们描述了成像单个树突脊柱的结构可塑性所需的程序和设备,它在中枢神经系统中拥有兴奋性突触,以及使用双光子荧光寿命显微镜(2P-FLIM)与基于Förster共振能量转移(FRET)的生物传感器相结合的潜在分子相互作用/生化反应。
    Plasticity of synaptic transmission underlies learning and memory. It is accompanied by changes in the density and size of synapses, collectively called structural plasticity. Therefore, understanding the mechanism of structural plasticity is critical for understanding the mechanism of synaptic plasticity. In this chapter, we describe the procedures and equipment required to image structural plasticity of a single dendritic spine, which hosts excitatory synapses in the central nervous system, and underlying molecular interactions/biochemical reactions using two-photon fluorescence lifetime microscopy (2P-FLIM) in combination with Förster resonance energy transfer (FRET)-based biosensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在哺乳动物大脑的发育过程中,大脑皮层中的锥体神经元形成高度组织的六层,具有不同的功能。这些神经元经历轴突延伸等发育过程,枝晶生长,和突触形成。学习和记忆需要通过树突分支和棘的动态变化来正确整合神经元连接。这些关键发育过程的中断与许多神经发育和神经退行性疾病有关。为了研究复杂的树突状结构,已经建立了几种有用的染色工具和标记神经元的遗传方法。监测单个神经元中树突脊柱的动力学仍然是一项具有挑战性的任务。这里,我们提供了一种结合体内双光子脑成像和子宫内电穿孔的方法,用荧光蛋白稀疏标记皮质神经元。该协议可能有助于阐明正常和疾病条件下活体啮齿动物的微观结构和神经复杂性的动力学。
    During the development of mammalian brains, pyramidal neurons in the cerebral cortex form highly organized six layers with different functions. These neurons undergo developmental processes such as axon extension, dendrite outgrowth, and synapse formation. A proper integration of the neuronal connectivity through dynamic changes of dendritic branches and spines is required for learning and memory. Disruption of these crucial developmental processes is associated with many neurodevelopmental and neurodegenerative disorders. To investigate the complex dendritic architecture, several useful staining tools and genetic methods to label neurons have been well established. Monitoring the dynamics of dendritic spine in a single neuron is still a challenging task. Here, we provide a methodology that combines in vivo two-photon brain imaging and in utero electroporation, which sparsely labels cortical neurons with fluorescent proteins. This protocol may help elucidate the dynamics of microstructure and neural complexity in living rodents under normal and disease conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    树突形态和树突棘是大脑神经元网络的关键特征。在患有精神疾病的患者和这些疾病的小鼠模型中已经观察到这些特征的异常。子宫内电穿孔是一种简单有效的基因转移系统,用于在子宫中发育小鼠胚胎。通过与Cre-loxP系统相结合,单个神经元的形态可以清晰而稀疏地可视化。这里,我们描述了该标记系统如何应用于可视化和评估皮质神经元的树突和树突棘。
    Dendrite morphology and dendritic spines are key features of the neuronal networks in the brain. Abnormalities in these features have been observed in patients with psychiatric disorders and mouse models of these diseases. In utero electroporation is an easy and efficient gene transfer system for developing mouse embryos in the uterus. By combining with the Cre-loxP system, the morphology of individual neurons can be clearly and sparsely visualized. Here, we describe how this labeling system can be applied to visualize and evaluate the dendrites and dendritic spines of cortical neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    原代神经元培养物通常用于研究影响神经元发育和成熟的遗传和外源因素。在开发过程中,神经元经历强烈的形态变化,涉及树突状乔木的扩张,树突棘的形成,和突触蛋白的表达。在这一章中,我们将涵盖方法学方法,允许定量评估体外培养的神经元。基于抗微管相关蛋白2的免疫染色,然后用FIJI软件包的SNT插件进行树突示踪,可以得出树突状乔木的各种定量特征。树突棘的数量和亚型可以通过用DiI和PhalloidiniFluor448双重标记,然后进行激光扫描共聚焦显微镜分析来评估。最后,突触前和突触后蛋白的表达可以通过免疫组织化学和定量使用几个可用的软件包,包括FIJI和Imaris,这也允许3D渲染和统计显示突触蛋白的表达水平。
    Primary neuronal cultures are commonly used to study genetic and exogenous factors influencing neuronal development and maturation. During development, neurons undergo robust morphological changes involving expansion of dendritic arbor, formation of dendritic spines, and expression of synaptic proteins. In this chapter, we will cover methodological approaches allowing quantitative assessment of in vitro cultured neurons. Various quantitative characteristics of dendritic arbor can be derived based on immunostaining against anti-microtubule-associated protein 2 followed by dendrite tracing with the SNT plug-in of the FIJI software package. The number and subtypes of dendritic spines can be assessed by double labeling with DiI and Phalloidin iFluor448 followed by laser scanning confocal microscopy analysis. Finally, expression of presynaptic and postsynaptic proteins can be determined by immunohistochemistry and quantification using several available software packages including FIJI and Imaris, which also allows for 3D rendering and statistical displaying of the expression level of synaptic proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    突触功能障碍是导致亨廷顿病(HD)认知功能下降的早期致病事件。我们先前报道,在HD皮层和纹状体中,活性ADAM10水平升高,引起突触细胞粘附蛋白N-钙黏着蛋白的过度蛋白水解。相反,ADAM10抑制具有神经保护作用,可防止HD小鼠的认知功能下降。尽管从历史上看,皮质-纹状体连接的破坏与HD的认知恶化有关,在HD海马中发现的树突脊柱丢失和长期增强(LTP)缺陷也被认为是该疾病的认知症状的原因。这项研究的目的是研究ADAM10对HD海马的脊柱病理和LTP缺陷的贡献。我们提供的证据表明,在两种HD小鼠模型的海马中,活性ADAM10增加,导致N-Cadherin的广泛蛋白水解,在脊柱形态学和突触可塑性中具有广泛认可的作用。重要的是,HD小鼠前脑ADAM10的条件性杂合缺失导致CA1锥体神经元的脊柱丢失和超微结构突触缺陷的恢复。同时,激活的ADAM10水平的正常化增加了HD海马中突触BDNF蛋白池和激活的ERK神经保护信号。我们还表明,ADAM10抑制剂GI254023X恢复了LTP缺陷,并增加了HD海马神经元中富含GluA1-AMPA受体的蘑菇棘的密度。值得注意的是,我们报告说,对HD海马神经元施用TrkB拮抗剂ANA12降低了GI254023X的有益作用,表明BDNF受体TrkB有助于介导由ADAM10抑制在HD中发挥的神经保护活性。总的来说,这些发现表明,ADAM10抑制与TrkB信号结合代表了预防HD中海马突触可塑性缺陷和认知功能障碍的有效策略.
    Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington\'s disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    老年人的情景记忆是多种多样的,并且被认为依赖于突触或树突棘的数量。我们分析了来自宗教秩序研究和拉什记忆与衰老项目的128名老年人中的2157个神经元。通过最小绝对收缩和选择算子回归和嵌套模型交叉验证对55,521个个体树突棘进行分析,发现颞叶皮质中的树突棘头径,但不是运动前皮层,在包含β淀粉样蛋白斑块评分的模型中改进了对情景记忆性能的预测,神经原纤维缠结病理,和性爱。这些发现支持了新兴的假设,在颞叶皮层,突触强度比老年记忆的数量更重要。
    Episodic memory in older adults is varied and perceived to rely on numbers of synapses or dendritic spines. We analyzed 2157 neurons among 128 older individuals from the Religious Orders Study and Rush Memory and Aging Project. Analysis of 55,521 individual dendritic spines by least absolute shrinkage and selection operator regression and nested model cross-validation revealed that the dendritic spine head diameter in the temporal cortex, but not the premotor cortex, improved the prediction of episodic memory performance in models containing β amyloid plaque scores, neurofibrillary tangle pathology, and sex. These findings support the emerging hypothesis that, in the temporal cortex, synapse strength is more critical than quantity for memory in old age.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    研究人类大脑皮层宏观连通性的功能和结构研究表明,与主要区域相比,高阶关联区域表现出更大的连通性。然而,这些大脑区域的突触组织仍未被探索。在目前的工作中,我们进行了体积电子显微镜来研究尸检时获得的人脑突触组织。具体来说,我们检查了布罗德曼区17、3b的第三层,和4,作为初级视觉的代表性区域,躯体感觉,和运动皮层。此外,我们与以前的颞极和前扣带回相关皮质区域(Brodmann区域24,38和21)的第III层数据集进行了比较分析.对9,690个突触连接进行了三维重建,表明某些突触特征特定于特定区域。每个体积的突触数量,突触后靶标的比例,突触大小可以区分一个区域和另一个区域,不管它们是联想皮层还是初级皮层。相比之下,其他突触特征是所有分析区域共有的,例如兴奋性和抑制性突触的比例,它们的形状,它们的空间分布,位于树突棘上的突触比例更高。本结果为人类大脑皮层的突触组织提供了进一步的见解。
    Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文综合综述了脑缺氧通过一系列分子变化对神经元和树突棘生理状态的影响,并探讨了这些变化与神经元功能损害之间的因果关系。作为一种严重的病理状况,脑缺氧可显著改变神经元和树突棘的形态和功能。具体来说,树突棘,作为神经元接收信息的关键结构,在低氧条件下经历诸如数量减少和形态异常的变化。这些改变进一步影响突触功能,导致神经传递障碍。本文深入研究了MAPK等分子途径的作用,AMPA受体,NMDA受体,和BDNF在缺氧诱导的神经元和树突棘的变化,并概述了当前的治疗策略。神经元对脑缺氧特别敏感,它们的顶端树突很容易受到破坏,从而影响认知功能。此外,星形胶质细胞和小胶质细胞在保护神经元和突触结构中起着不可或缺的作用,调节他们的正常功能,并有助于受伤后的修复过程。这些研究不仅有助于理解相关神经系统疾病的发病机制,而且为开发新的治疗策略提供了重要的见解。未来的研究应进一步关注缺氧条件下神经元和树突棘的动态变化及其与认知功能的内在联系。
    This article comprehensively reviews how cerebral hypoxia impacts the physiological state of neurons and dendritic spines through a series of molecular changes, and explores the causal relationship between these changes and neuronal functional impairment. As a severe pathological condition, cerebral hypoxia can significantly alter the morphology and function of neurons and dendritic spines. Specifically, dendritic spines, being the critical structures for neurons to receive information, undergo changes such as a reduction in number and morphological abnormalities under hypoxic conditions. These alterations further affect synaptic function, leading to neurotransmission disorders. This article delves into the roles of molecular pathways like MAPK, AMPA receptors, NMDA receptors, and BDNF in the hypoxia-induced changes in neurons and dendritic spines, and outlines current treatment strategies. Neurons are particularly sensitive to cerebral hypoxia, with their apical dendrites being vulnerable to damage, thereby affecting cognitive function. Additionally, astrocytes and microglia play an indispensable role in protecting neuronal and synaptic structures, regulating their normal functions, and contributing to the repair process following injury. These studies not only contribute to understanding the pathogenesis of related neurological diseases but also provide important insights for developing novel therapeutic strategies. Future research should further focus on the dynamic changes in neurons and dendritic spines under hypoxic conditions and their intrinsic connections with cognitive function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    七氟醚诱导小鼠发育神经毒性;然而,潜在机制尚不清楚.在骨髓细胞2(TREM2)上表达的触发受体对于在大脑发育的早期阶段的小胶质细胞介导的突触细化至关重要。我们探讨了TREM2对七氟醚诱导的小鼠发育神经毒性过程中树突棘修剪的影响。在出生后第6、8和10天用七氟烷麻醉小鼠。使用开场试验和Morris水迷宫试验评估行为性能。通过立体定位注射TREM2的遗传敲低和TREM2的过表达用于机理实验。西方印迹,免疫荧光,电子显微镜,三维重建,高尔基染色,进行全细胞膜片钳记录。七氟醚暴露上调TREM2蛋白表达,增加小胶质细胞介导的树突棘修剪,降低了CA1神经元的突触多重性和兴奋性。TREM2基因敲除显著降低树突棘修剪,和部分加重七氟醚处理的小鼠的神经元形态异常和认知障碍。相比之下,TREM2过表达增强了小胶质细胞介导的树突棘修剪,并挽救了神经元形态异常和认知功能障碍。TREM2通过增强小胶质细胞介导的CA1神经元树突棘的修剪,在新生儿暴露于七氟醚后对小鼠神经认知障碍发挥保护作用。这为预防七氟烷诱导的发育神经毒性提供了潜在的治疗靶标。
    Sevoflurane induces developmental neurotoxicity in mice; however, the underlying mechanisms remain unclear. Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for microglia-mediated synaptic refinement during the early stages of brain development. We explored the effects of TREM2 on dendritic spine pruning during sevoflurane-induced developmental neurotoxicity in mice. Mice were anaesthetized with sevoflurane on postnatal days 6, 8, and 10. Behavioral performance was assessed using the open field test and Morris water maze test. Genetic knockdown of TREM2 and overexpression of TREM2 by stereotaxic injection were used for mechanistic experiments. Western blotting, immunofluorescence, electron microscopy, three-dimensional reconstruction, Golgi staining, and whole-cell patch-clamp recordings were performed. Sevoflurane exposures upregulated the protein expression of TREM2, increased microglia-mediated pruning of dendritic spines, and reduced synaptic multiplicity and excitability of CA1 neurons. TREM2 genetic knockdown significantly decreased dendritic spine pruning, and partially aggravated neuronal morphological abnormalities and cognitive impairments in sevoflurane-treated mice. In contrast, TREM2 overexpression enhanced microglia-mediated pruning of dendritic spines and rescued neuronal morphological abnormalities and cognitive dysfunction. TREM2 exerts a protective role against neurocognitive impairments in mice after neonatal exposures to sevoflurane by enhancing microglia-mediated pruning of dendritic spines in CA1 neurons. This provides a potential therapeutic target in the prevention of sevoflurane-induced developmental neurotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号