Dendritic spine

树突状脊柱
  • 文章类型: Journal Article
    突触传递的可塑性是学习和记忆的基础。它伴随着突触密度和大小的变化,统称为结构可塑性。因此,理解结构可塑性的机制对于理解突触可塑性的机制至关重要。在这一章中,我们描述了成像单个树突脊柱的结构可塑性所需的程序和设备,它在中枢神经系统中拥有兴奋性突触,以及使用双光子荧光寿命显微镜(2P-FLIM)与基于Förster共振能量转移(FRET)的生物传感器相结合的潜在分子相互作用/生化反应。
    Plasticity of synaptic transmission underlies learning and memory. It is accompanied by changes in the density and size of synapses, collectively called structural plasticity. Therefore, understanding the mechanism of structural plasticity is critical for understanding the mechanism of synaptic plasticity. In this chapter, we describe the procedures and equipment required to image structural plasticity of a single dendritic spine, which hosts excitatory synapses in the central nervous system, and underlying molecular interactions/biochemical reactions using two-photon fluorescence lifetime microscopy (2P-FLIM) in combination with Förster resonance energy transfer (FRET)-based biosensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经突形成的分子机制包括途径之间的多种串扰,例如膜运输,细胞内信号,和肌动蛋白细胞骨架重排。为了研究参与这种复杂途径的蛋白质,我们介绍了基于质谱的蛋白质组学和数据分析的样品制备的详细工作流程.我们还包括对蛋白质进行无标记定量的步骤,这将有助于研究人员在全球范围内量化神经元形态发生关键调节因子的表达水平的变化。
    The molecular mechanisms underlying neurite formation include multiple crosstalk between pathways such as membrane trafficking, intracellular signaling, and actin cytoskeletal rearrangement. To study the proteins involved in such complex pathways, we present a detailed workflow of the sample preparation for mass spectrometry-based proteomics and data analysis. We have also included steps to perform label-free quantification of proteins that will help researchers quantify changes in the expression levels of key regulators of neuronal morphogenesis on a global scale.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在哺乳动物大脑的发育过程中,大脑皮层中的锥体神经元形成高度组织的六层,具有不同的功能。这些神经元经历轴突延伸等发育过程,枝晶生长,和突触形成。学习和记忆需要通过树突分支和棘的动态变化来正确整合神经元连接。这些关键发育过程的中断与许多神经发育和神经退行性疾病有关。为了研究复杂的树突状结构,已经建立了几种有用的染色工具和标记神经元的遗传方法。监测单个神经元中树突脊柱的动力学仍然是一项具有挑战性的任务。这里,我们提供了一种结合体内双光子脑成像和子宫内电穿孔的方法,用荧光蛋白稀疏标记皮质神经元。该协议可能有助于阐明正常和疾病条件下活体啮齿动物的微观结构和神经复杂性的动力学。
    During the development of mammalian brains, pyramidal neurons in the cerebral cortex form highly organized six layers with different functions. These neurons undergo developmental processes such as axon extension, dendrite outgrowth, and synapse formation. A proper integration of the neuronal connectivity through dynamic changes of dendritic branches and spines is required for learning and memory. Disruption of these crucial developmental processes is associated with many neurodevelopmental and neurodegenerative disorders. To investigate the complex dendritic architecture, several useful staining tools and genetic methods to label neurons have been well established. Monitoring the dynamics of dendritic spine in a single neuron is still a challenging task. Here, we provide a methodology that combines in vivo two-photon brain imaging and in utero electroporation, which sparsely labels cortical neurons with fluorescent proteins. This protocol may help elucidate the dynamics of microstructure and neural complexity in living rodents under normal and disease conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管男性擅长运动任务需要力量,女性表现出更大的运动学习灵活性。认知灵活性与通过修剪实现的低基线蘑菇脊柱密度相关,修剪可以由α4βδGABAA受体(GABAR)触发;有缺陷的突触修剪会损害这一过程。
    我们调查了初级运动皮层(L5M1)的第5层锥体细胞的蘑菇脊柱修剪的青少年修剪的性别差异,一个运动学习必不可少的网站,使用高尔基染色切片的显微镜评估。我们使用免疫组织化学和电生理技术评估了α4GABAR的表达(全细胞膜片钳对100nM加波沙朵的反应,对α4βδGABAR的选择性)。然后,我们比较了不同青春期后蘑菇脊柱密度的小组在运动学习(恒定速度)和学习灵活性(恒定速度后加速速度)旋转杆任务上的表现。
    雌性小鼠近端L5M1的蘑菇棘从PND35(青春期开始)到PND56(青春期:2.23±0.21棘/10μm;青春期后:0.81±0.14棘/10μm,P<0.001);雄菇脊柱密度不变。这是由于雌性中更大的α4βδGABAR表达(P<0.0001),因为α4-/-小鼠没有表现出蘑菇脊柱修剪。尽管所有组的运动学习都相似,只有雌性野生型小鼠(低蘑菇脊柱密度)在恒速任务后学会了加速旋转任务(P=0.006),运动学习灵活性的衡量标准。
    这些结果表明,与雄性和雌性α4-/-小鼠相比,雌性小鼠的最佳运动学习灵活性与L5M1青春期后蘑菇脊柱密度的低基线水平有关。
    UNASSIGNED: Although males excel at motor tasks requiring strength, females exhibit greater motor learning flexibility. Cognitive flexibility is associated with low baseline mushroom spine densities achieved by pruning which can be triggered by α4βδ GABAA receptors (GABARs); defective synaptic pruning impairs this process.
    UNASSIGNED: We investigated sex differences in adolescent pruning of mushroom spine pruning of layer 5 pyramidal cells of primary motor cortex (L5M1), a site essential for motor learning, using microscopic evaluation of Golgi stained sections. We assessed α4GABAR expression using immunohistochemical and electrophysiological techniques (whole cell patch clamp responses to 100 nM gaboxadol, selective for α4βδ GABARs). We then compared performance of groups with different post-pubertal mushroom spine densities on motor learning (constant speed) and learning flexibility (accelerating speed following constant speed) rotarod tasks.
    UNASSIGNED: Mushroom spines in proximal L5M1 of female mice decreased >60% from PND35 (puberty onset) to PND56 (Pubertal: 2.23 ± 0.21 spines/10 μm; post-pubertal: 0.81 ± 0.14 spines/10 μm, P < 0.001); male mushroom spine density was unchanged. This was due to greater α4βδ GABAR expression in the female (P < 0.0001) because α4 -/- mice did not exhibit mushroom spine pruning. Although motor learning was similar for all groups, only female wild-type mice (low mushroom spine density) learned the accelerating rotarod task after the constant speed task (P = 0.006), a measure of motor learning flexibility.
    UNASSIGNED: These results suggest that optimal motor learning flexibility of female mice is associated with low baseline levels of post-pubertal mushroom spine density in L5M1 compared to male and female α4 -/- mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    树突棘是突触可塑性的部位,它们的头部大小与相应突触的强度相关。我们最近发现,即使在活动受阻或可塑性诱导后,脊柱头部大小的分布也遵循对数正态分布。由于细胞因子肿瘤坏死因子(TNF)影响突触传递和组成型TNF和受体(TNF-R)缺乏导致脊柱头部大小分布的变化,我们测试了这些基因改变是否破坏了脊柱头部大小的对数正则性。此外,我们区分了包含肌动蛋白调节蛋白突触素(SP阳性)的棘,大量存在,强壮而稳定的刺和缺乏它的刺(SP阴性)。我们的分析显示,TNF-R1,TNF-R2或TNF-R1和2(TNF-R1/R2)的缺乏都不会降解一般对数正态,脊柱头部大小的偏斜分布(所有脊柱,SP阳性棘,SP负刺)。然而,TNF,TNF-R1和TNF-R2缺乏影响对数正态分布的宽度,TNF-R1/2缺乏使分布向左移动。我们的发现证明了对数正态的鲁棒性,偏斜分布,即使面对改变脊柱头部大小分布的遗传操作,也能保持这种状态。我们的观察结果与调节棘分布及其头部大小的神经元的稳态适应机制一致。
    Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过泛素-蛋白酶体系统调节蛋白质降解对于正常的大脑发育至关重要,轴突生长,突触生长和可塑性。E3泛素连接酶RFWD2在神经系统疾病的发生和发展中起关键作用,包括阿尔茨海默病(AD)的发病机理,但是控制神经元突触蛋白稳态的机制仍然知之甚少。这里,结果表明,RFWD2的表达水平随着大鼠年龄的增长而逐渐降低,并与体内大脑皮层神经元和树突的发育呈负相关。通过与神经元突触蛋白的共定位,RFWD2被证明位于兴奋性突触和抑制性突触的突触前末端和一些突触后侧面(SYN,PSD95、Vglut1和GAD67)。RFWD2的过表达促进了树突的发育和树突的形成,并通过降低体外ETV1,ETV4,ETV5和c-JUN的表达显着降低了突触素和PSD95的表达。此外,全细胞膜切片钳结果显示,RFWD2过表达导致神经元细胞的膜容量更大,细胞复极化不足,神经元发出动作电位的时间过程更长,兴奋性降低。RFWD2调节树突发育和可塑性,通过翻译后调控机制激活ERK/PEA3/c-Jun通路,在大鼠大脑皮质神经元中形成树突状棘并发挥突触功能,可作为神经系统疾病的有效治疗靶点。
    The regulation of protein degradation through the ubiquitin-proteasome system is essential for normal brain development, axon growth, synaptic growth and plasticity. The E3 ubiquitin ligase RFWD2 plays a key role in the onset and development of neurological diseases, including the pathogenesis of Alzheimer\'s disease (AD), but the mechanisms controlling the homeostasis of neuronal synaptic proteins are still poorly understood. Here, we showed that the expression level of RFWD2 gradually decreased with the age of the rats and was negatively correlated with the development of cerebral cortical neurons and dendrites in vivo. RFWD2 was shown to localize to presynaptic terminals and some postsynaptic sides of both excitatory synapses and inhibitory synapses via colocalization with neuronal synaptic proteins (SYN, PSD95, Vglut1 and GAD67). Overexpression of RFWD2 promoted dendrite development and dendritic spine formation and markedly decreased the expression of synaptophysin and PSD95 by reducing the expression of ETV1, ETV4, ETV5 and c-JUN in vitro. Furthermore, the whole-cell membrane slice clamp results showed that RFWD2 overexpression resulted in greater membrane capacitance in neuronal cells, inadequate cell repolarization, and a longer time course for neurons to emit action potentials with decreased excitability. RFWD2 regulates dendritic development and plasticity, dendritic spine formation and synaptic function in rat cerebral cortex neurons by activating the ERK/PEA3/c-Jun pathway via a posttranslational regulatory mechanism and can be used as an efficient treatment target for neurological diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:神经性厌食症(AN)的特征是下丘脑-垂体-肾上腺轴过度激活和认知缺陷。然而,对快速非基因组应激反应的参与知之甚少。这项研究调查了分子,雌性大鼠厌食表型诱导对海马应激相关机制的结构和行为特征。
    方法:雌性青春期大鼠,暴露于食物限制和车轮通行的组合,即,基于活动的厌食症(ABA)协议,在病理急性期(出生后第42天)或7天恢复期(P49)后处死。
    结果:ABA大鼠,除了减肥和增加车轮活动,改变他们几天的活动模式,显示食物预期活性增加,读出他们从事激烈体力活动的动机。在ABA大鼠中,皮质酮血浆水平在P42时升高,而在P49时降低。在海马的膜部分,我们发现糖皮质激素受体水平降低以及Caldesmon的表达降低,n-cadherin和neuroligin-1,细胞骨架稳定性和谷氨酸能稳态的分子标记。因此,结构分析显示树突棘密度降低,蘑菇状刺的数量减少,加上数量增加的薄形刺。这些事件与空间顺序对象识别测试中测得的空间记忆受损平行。即使ABA大鼠的体重恢复,这些作用仍然存在。
    结论:我们的发现表明,ABA诱导协调海马适应不良的结构和功能可塑性,导致认知缺陷,提供了一种可能针对AN患者的推定机制。
    OBJECTIVE: Anorexia nervosa (AN) is characterized by hyperactivation of the hypothalamic-pituitary-adrenal axis and cognitive deficits. However, little is known about the rapid non-genomic stress response involvement. This study investigates the molecular, structural and behavioral signatures of the anorexic phenotype induction in female rats on stress-related mechanisms in the hippocampus.
    METHODS: Female adolescent rats, exposed to the combination of food restriction and wheel access, i.e., the activity-based anorexia (ABA) protocol, were sacrificed in the acute phase of the pathology (postnatal day [P]42) or following a 7-day recovery period (P49).
    RESULTS: ABA rats, in addition to body weight loss and increased wheel activity, alter their pattern of activity over days, showing increased food anticipatory activity, a readout of their motivation to engage in intense physical activity. Corticosterone plasma levels were enhanced at P42 while reduced at P49 in ABA rats. In the membrane fraction of the hippocampus, we found reduced glucocorticoid receptor levels together with reduced expression of caldesmon, n-cadherin and neuroligin-1, molecular markers of cytoskeletal stability and glutamatergic homeostasis. Accordingly, structural analyses revealed reduced dendritic spine density, a reduced number of mushroom-shaped spines, together with an increased number of thin-shaped spines. These events are paralleled by impairment in spatial memory measured in the spatial order object recognition test. These effects persisted even when body weight of ABA rats was restored.
    CONCLUSIONS: Our findings indicate that ABA induction orchestrates hippocampal maladaptive structural and functional plasticity, contributing to cognitive deficits, providing a putative mechanism that could be targeted in AN patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞质FMR1相互作用蛋白2(CYFIP2)在神经元中具有不同的分子功能,包括肌动蛋白聚合的调节,mRNA翻译,线粒体形态和功能。CYFIP2基因突变与早发性癫痫和神经发育障碍有关,而其蛋白质水平的降低与阿尔茨海默病(AD)有关。值得注意的是,先前的研究揭示了AD样表型,如树突状脊柱丢失,在12个月大的Cyfip2杂合小鼠的海马CA1锥体神经元中,而不是年龄匹配的CA1锥体神经元特异性Cyfip2条件性敲除(cKO)小鼠。本研究旨在研究与Cyfip2杂合子小鼠相比,Cyfip2cKO小鼠的树突棘丢失是否仅延迟,并进一步探讨CYFIP2在老年小鼠中调节的神经元表型。我们表征了枝晶和枝晶突起的形态,以及17个月大的Cyfip2cKO小鼠CA1锥体神经元的兴奋性/抑制性突触密度。总体树突分支正常,随着基底长度的减少,不是顶端,Cyfip2cKO小鼠CA1锥体神经元中的树突。此外,而树突状突起密度保持正常,在基部观察到蘑菇棘的长度和短刺的头部体积的变化,不是顶端,Cyfip2cKO小鼠的树突。尽管兴奋性突触密度保持不变,抑制突触密度在心尖增加,不是基础的,Cyfip2cKO小鼠的树突。因此,CYFIP2的细胞自主减少似乎不足以诱导老年小鼠CA1锥体神经元的树突棘丢失。然而,CYFIP2需要维持正常的树突长度,树突状突起形态,和抑制性突触密度。
    The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the CYFIP2 gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer\'s disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old Cyfip2 heterozygous mice but not of age-matched CA1 pyramidal neuron-specific Cyfip2 conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in Cyfip2 cKO mice is merely delayed compared to Cyfip2 heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old Cyfip2 cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of Cyfip2 cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of Cyfip2 cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of Cyfip2 cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    如何在大脑可塑性持续的同时保留新形成的记忆一直是争论的根源。一个想法是,经历了最近可塑性的突触会对进一步的可塑性产生抵抗力,一种常被称为饱和的复塑性。这里,我们探讨了限制最近增强的突触可塑性的局部树突机制。我们表明,最近增强的单个突触表现出突触特异性的不应期,以进一步增强。我们进一步发现,不应期与突触后CaMKII信号传导减少有关;然而,更强的突触激活仅部分恢复了进一步可塑性的能力。重要的是,不应期在一小时后释放,与几种突触后蛋白富集到可塑性前水平相吻合。值得注意的是,增加突触后支架蛋白的水平,PSD95,而不是PSD93,克服了不应期。我们的结果支持一个模型,其中单个突触的增强足以启动突触特异性不应期,该不应期持续到关键的突触后蛋白恢复其稳态突触水平。
    新修饰的突触连接无法经历进一步可塑性的不应期是一种提出的机制,通过该机制,新形成的记忆可以保留在突触水平,而大脑可塑性正在进行中。这里,我们提供了对时空信号机制的新见解,这些信号机制调节海马中个体兴奋性突触可塑性的不应期的建立和维持,对学习和记忆至关重要的大脑区域。我们的结果对鉴定可能有助于改善与疾病相关的学习成果的分子靶标具有意义。
    How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to pre-plasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酗酒会导致各种神经系统疾病,包括运动学习缺陷,可能通过影响神经元和星形细胞活动。如我们先前的工作所示,体育锻炼是治疗突触损失和运动缺陷的有效方法。在这项研究中,我们未揭示运动训练在皮质神经元和星形细胞功能恢复中的作用。使用慢性酒精注射小鼠模型,我们发现星形胶质细胞的高反应性伴随着树突状棘的丧失以及初级运动皮质中神经元活性的降低.持续的跑步机运动训练,另一方面,改善神经脊柱形成和抑制反应性星形胶质细胞,减轻酒精暴露引起的运动学习缺陷。这些数据共同支持耐力运动在酒精滥用下的运动功能康复中的效力。
    Alcohol abuse induces various neurological disorders including motor learning deficits, possibly by affecting neuronal and astrocytic activity. Physical exercise is one effective approach to remediate synaptic loss and motor deficits as shown by our previous works. In this study, we unrevealed the role of exercise training in the recovery of cortical neuronal and astrocytic functions. Using a chronic alcohol injection mouse model, we found the hyperreactivity of astrocytes along with dendritic spine loss plus lower neuronal activity in the primary motor cortex. Persistent treadmill exercise training, on the other hand, improved neural spine formation and inhibited reactive astrocytes, alleviating motor learning deficits induced by alcohol exposure. These data collectively support the potency of endurance exercise in the rehabilitation of motor functions under alcohol abuse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号