Dendrite

枝晶
  • 文章类型: Journal Article
    神经元形成细胞类型特定的形态,这些形态由细胞表面分子及其控制树突生长的细胞事件形成。一个生长规则是树突自我回避,通过避免同胞分支,树突在神经元的领土内均匀分布。在哺乳动物神经元中,树突的自我回避是由一大家族的细胞识别分子,称为成簇的原钙粘蛋白(cPcdhs)调节的。遗传和分子研究表明,cPcdhs介导自树突之间的嗜性识别和排斥。然而,该模型尚未通过对开发过程中的自我回避的直接调查进行测试。这里,我们对树突形态发生进行了实时成像和四维(4D)量化,以定义动力学和cPcdh依赖的自我回避机制。我们专注于小鼠视网膜星爆无长突细胞(SAC),这需要γ-Pcdhs(Pcdhgs)和自我/非自我识别来建立刻板的放射状形态,同时允许树突状与相邻的SAC相互作用。通过形态发生,SAC延伸树突状突起,反复填充生长的乔木,并与附近的自枝状突起接触并缩回。与非自接触突起相比,自我接触的事件有更长的寿命,和一个子集持续为循环。在没有Pcdhgs的情况下,非自接触动力学不受影响,但自接触缩回显着减少。自接触桥梁积累,导致树突状过程的捆绑和乔木形状的破坏。通过实时跟踪枝晶自回避,我们的发现表明,γ-Pcdhs介导了接触同胞树突之间的自我识别和退缩。我们的结果还说明了自我回避如何塑造随机和空间填充的树突状生长,以在哺乳动物神经元中形成稳健的模式。
    Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron\'s territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这个协议中,我们专注于分析果蝇IV类神经元的内部分支。这些神经元的特征在于其高度分支的轴突和树突,并且错综复杂地编织了幼虫体。随着果蝇幼虫进入发育阶段,IV类神经元的树突状乔木经历显著的转变。随着果蝇幼虫的发育,它们的第四类树枝状乔木生长。在产卵后的最初24小时(AEL),枝晶比段小。在第一龄幼虫期的随后24小时内,树突状乔木的增长速度超过了细分市场,实现平铺。48小时后,Arbors和细分市场同时增长。IV类树突附近的表皮细胞与节段生长成比例地扩张。这一观察结果表明,IV类细胞可能通过分支扩张-均匀延伸的分支生长,类似于I类细胞[1,2]。要了解IV类复杂乔木结构是由膨胀形成的还是仅仅由生长的尖端形成的,我们开发该协议是为了引入一种系统的方法来定量评估内部分支的增长动态。•果蝇胚胎和幼虫基因型是;;ppkCD4-tdGFP,明确标记了IV类神经元•用于制备安装和成像果蝇幼虫的琼脂垫的协议改编自MonicaDriscoll\的方法•在不使用麻醉剂的情况下对神经元进行成像,并且持续时间很短•该技术涉及使用旋转盘共焦显微镜。
    In this protocol, we focused on analyzing internal branches of Drosophila class IV neurons. These neurons are characterized by their highly branched axons and dendrites and intricately tile the larval body. As Drosophila larvae progress through developmental stages, the dendritic arbors of Class IV neurons undergo notable transformations. As Drosophila larvae develop, their Class IV dendritic arbors grow. In the initial 24 h after egg laying (AEL), the dendrites are smaller than segments. During the subsequent 24 h of the first instar larval stage, dendritic arbors outpace segment growth, achieving tiling. After 48 h, arbors and segments grow concurrently. Epidermal cells near Class IV dendrites expand in proportion to segment growth. This observation suggested that Class IV cells might grow via branch dilation-uniformly elongating branches, akin to Class I cells [1,2]. To understand whether the class IV complex arbor structure is formed by dilation or simply from growing tips, we developed this protocol to introduce a systematic approach for quantitatively assessing the growth dynamics of internal branches. Key features • This protocol employs imaging the same neuron over different development times • Drosophila embryo and larvae genotype is ;;ppkCD4-tdGFP, which explicitly tags class IV neurons • This protocol for the preparation of agar pads to mount and image Drosophila larvae is adapted from Monica Driscoll\'s method • Neurons are imaged without the use of anesthetics and for a short duration of time • This technique involves the use of a spinning disk confocal microscope.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    维持NAD池的受损能力被认为是神经退行性疾病的关键潜在病理生理学特征。NAD作为主要细胞功能的底物,包括线粒体稳态,细胞信号,轴突运输,轴突/华勒变性,和神经元能量供应。树突状变性是神经元应激的早期标志,先于细胞丢失。然而,关于病理环境中的树突结构保存和成熟神经元的重塑知之甚少。视网膜神经节细胞树突状萎缩是该疾病动物模型的早期病理特征,并已在死人青光眼样品中得到证实。在这里,我们报告了烟酰胺(通过NAD补救途径NAD的前体)丰富的饮食提供了强大的视网膜神经节细胞树突状保护,并在实验性青光眼的大鼠模型中保留了树突状结构。来自相同动物的视神经样品的代谢组学分析证明,烟酰胺在青光眼中提供稳健的代谢神经保护。我们对视网膜神经节细胞代谢谱的理解的进展揭示了在神经退行性疾病中引发早期神经元变化的能量转移。由于烟酰胺能在短期内改善青光眼患者的视功能,我们假设这种视觉恢复的一部分可能是由于压力下的树突保留,但还没有完全退化,视网膜神经节细胞.
    A compromised capacity to maintain NAD pools is recognized as a key underlying pathophysiological feature of neurodegenerative diseases. NAD acts as a substrate in major cell functions including mitochondrial homeostasis, cell signalling, axonal transport, axon/Wallerian degeneration, and neuronal energy supply. Dendritic degeneration is an early marker of neuronal stress and precedes cell loss. However, little is known about dendritic structural preservation in pathologic environments and remodelling in mature neurons. Retinal ganglion cell dendritic atrophy is an early pathological feature in animal models of the disease and has been demonstrated in port-mortem human glaucoma samples. Here we report that a nicotinamide (a precursor to NAD through the NAD salvage pathway) enriched diet provides robust retinal ganglion cell dendritic protection and preserves dendritic structure in a rat model of experimental glaucoma. Metabolomic analysis of optic nerve samples from the same animals demonstrates that nicotinamide provides robust metabolic neuroprotection in glaucoma. Advances in our understanding of retinal ganglion cell metabolic profiles shed light on the energetic shift that triggers early neuronal changes in neurodegenerative diseases. As nicotinamide can improve visual function short term in existing glaucoma patients, we hypothesize that a portion of this visual recovery may be due to dendritic preservation in stressed, but not yet fully degenerated, retinal ganglion cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成熟的神经元有稳定的树突结构,这对神经系统的正常运作至关重要。经历结构可塑性的能力,需要支持记忆形成等自适应过程,仍然存在于成熟的神经元中。尚不清楚是什么分子和细胞过程控制着树突状结构可塑性和稳定性之间的这种微妙平衡。由于萎缩或适应性可塑性不良而导致的最佳树突结构的保存失败会导致异常的连通性,并与各种神经系统疾病有关。血管内皮生长因子D(VEGFD)对于维持成熟的树突树至关重要。这里,我们描述了VEGFD如何影响神经元细胞骨架,并证明VEGFD通过影响肌动蛋白皮质和减少微管动力学而对树突稳定产生影响。Further,我们发现,在突触活动诱导的结构可塑性VEGFD下调。我们的研究结果表明,VEGFD,作用于其同源受体VEGFR3,通过负向调节培养的海马神经元和成年小鼠海马体内的树突生长来反对结构变化,从而对记忆形成产生影响。磷酸化蛋白质组筛选鉴定了由VEGFD调节的几种细胞骨架调节蛋白。在肌动蛋白皮质相关蛋白中,我们发现VEGFD通过激活纹状体富集蛋白酪氨酸磷酸酶(STEP)诱导478酪氨酸处ezrin去磷酸化.活性触发的树突的结构可塑性在体外和体内都受到磷酸缺陷型突变体ezrin的表达的损害。因此,VEGFD通过充当结构重塑的分子制动器来控制树突的稳定和可塑性之间的平衡。
    Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    树突形态和树突棘是大脑神经元网络的关键特征。在患有精神疾病的患者和这些疾病的小鼠模型中已经观察到这些特征的异常。子宫内电穿孔是一种简单有效的基因转移系统,用于在子宫中发育小鼠胚胎。通过与Cre-loxP系统相结合,单个神经元的形态可以清晰而稀疏地可视化。这里,我们描述了该标记系统如何应用于可视化和评估皮质神经元的树突和树突棘。
    Dendrite morphology and dendritic spines are key features of the neuronal networks in the brain. Abnormalities in these features have been observed in patients with psychiatric disorders and mouse models of these diseases. In utero electroporation is an easy and efficient gene transfer system for developing mouse embryos in the uterus. By combining with the Cre-loxP system, the morphology of individual neurons can be clearly and sparsely visualized. Here, we describe how this labeling system can be applied to visualize and evaluate the dendrites and dendritic spines of cortical neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元的树突接收突触或感觉输入并且是神经元计算的重要部位。树突的形态特征不仅是神经元类型的标志,而且在很大程度上决定了神经元的功能。因此,枝晶形态发生一直是神经科学中深入研究的课题。树突形态的定量,这是准确评估表型所必需的,通常是一项具有挑战性的任务,特别是对于复杂的神经元。因为人工追踪树枝状分支是费时费力的,需要自动化或半自动化方法来有效分析大量样品。用于研究树突形态发生机制的一种流行的体内模型系统是果蝇幼虫周围神经系统中的树突树枝化(da)神经元。在这一章中,我们介绍了可视化和测量这些神经元的树突状乔木的方法。我们首先介绍da神经元,并概述用于测量da神经元树突的方法。然后,我们讨论了神经元可视化和图像获取的技术和详细步骤。最后,我们提供了枝晶跟踪和测量的示例步骤。
    Dendrites of neurons receive synaptic or sensory inputs and are important sites of neuronal computation. The morphological features of dendrites not only are hallmarks of the neuronal type but also largely determine a neuron\'s function. Thus, dendrite morphogenesis has been a subject of intensive study in neuroscience. Quantification of dendritic morphology, which is required for accurate assessment of phenotypes, can often be a challenging task, especially for complex neurons. Because manual tracing of dendritic branches is labor-intensive and time-consuming, automated or semiautomated methods are required for efficient analysis of a large number of samples. A popular in vivo model system for studying the mechanisms of dendrite morphogenesis is dendritic arborization (da) neurons in the Drosophila larval peripheral nervous system. In this chapter, we introduce methods for visualizing and measuring the dendritic arbors of these neurons. We begin with an introduction of da neurons and an overview of the methods that have been used for measuring da neuron dendrites. We then discuss the techniques and detailed steps of neuron visualization and image acquisition. Finally, we provide example steps for dendrite tracing and measurement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在脊椎动物视网膜中,相同类型的单个神经元以称为马赛克的模式规则地分布在整个组织中。在发育过程中马赛克的建立需要同型神经元之间的细胞-细胞排斥,但是这种排斥背后的机制仍然未知。这里,我们展示了两种小鼠视网膜细胞类型,星爆无长突细胞关闭和开启,通过使用它们的树突状乔木排斥相邻的同型躯体来建立马赛克间距。使用转基因工具和单细胞标记,我们确定了星爆躯体与邻近的星爆树突接触的发育期;这些有助于排除躯体在邻居的树突状领土内定居。树枝状体排斥是由MEGF10介导的,MEGF10是星爆镶嵌图案形成所需的细胞表面分子。我们的结果表明,树枝状体排斥是星爆镶嵌间距的关键机制,并提高了这可能是跨许多细胞类型和物种进行镶嵌图案形成的一般机制的可能性。
    In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here, we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using transgenic tools and single-cell labeling, we identify a developmental period when starburst somata are contacted by neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor\'s dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing and raise the possibility that this could be a general mechanism for mosaic patterning across many cell types and species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元树突的分支结构是神经元如何形成有序网络的关键因素,并不断发现蛋白质和蛋白质-蛋白质相互作用,这些蛋白质和蛋白质相互作用指导或执行树突的分支和延伸。我们先前的工作表明,分子支架Pdlim5和delta-catenin,在结合中,是两种蛋白质,有助于调节培养的海马神经元中树突的分支和伸长,并通过上游谷氨酸信号触发的磷酸化依赖性机制实现。在本报告中,我们重点介绍了Pdlim5的多个支架域,以及每个支架域如何有助于枝晶分支。Pdlim5中的三个识别区域是PDZ,DUF,和三个LIM域;然而,未解决的是Pdlim5的分子内构象以及哪些结构域对于调节树突分支至关重要。我们通过单独检查每个结构域的作用并在全长蛋白质的背景下使用缺失突变体来解决Pdlim5的结构和功能。使用原代海马神经元的结果表明,Pdlim5DUF结构域在增加树突分支中起主导作用。PDZ域和LIM域都不单独支持增加的分支。在全长Pdlim5的情况下使用缺失突变体证实了DUF结构域的中心作用。在分子建模的指导下,其他域映射研究表明,C端LIM域与N端PDZ域形成稳定的相互作用,我们确定了这种相互作用所需的每个结构域界面的关键氨基酸残基。我们认为,Pdlim5的中央DUF结构域可能在全长蛋白的情况下受到N端PDZ和C端LIM结构域之间的分子内相互作用的调节。总的来说,我们的研究揭示了调节Pdlim5在调节神经元分支中的功能的新机制,并强调了DUF域在介导这些作用中的关键作用。
    The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein-protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5\'s multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5\'s structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5\'s function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    复杂系统既不是完全确定的,也不是完全随机的。生物复杂系统,包括单个神经元,表现出随机性的中间机制,这些机制招募了功能隔离的子系统的特定组合的整合。这种生物学功能的出现为简并性的表达提供了底物,子系统的不同组合产生相似功能的能力。这里,我们提供了通过不同离子通道组合的功能整合在齿状回颗粒细胞(GC)的形态学现实模型中简并性表达的证据。我们进行了45个参数的随机搜索,跨越16个主动和被动离子通道,每个人都受到其门控动力学和定位曲线的生物物理限制,搜索有效的GC模型。有效的模型是那些满足来自大鼠GC的17个亚阈值和超阈值细胞尺度电生理测量的模型。15,000个随机模型中的绝大多数(>99%)不是电生理有效的,证明了任意随机的离子通道组合不会产生GC函数。141个有效模型(15,000个模型中的0.94%)在局部和传播的电生理测量中表现出异质性和交叉依赖性,与他们各自的生物对应物相匹配。重要的是,这些有效的模型在整个参数空间中都很普遍,并且在不同参数之间表现出微弱的交叉依赖性。这些观察结果共同表明,GC生理学既不能通过完全随机的离子通道组合获得,也没有完全确定的满足所有约束的单一参数组合。复杂性,测量空间和参数空间中的异质性,与GC生理学相关的简并性应严格考虑,同时评估GC及其在生理和病理条件下的稳健性。
    Complex systems are neither fully determined nor completely random. Biological complex systems, including single neurons, manifest intermediate regimes of randomness that recruit integration of specific combinations of functionally segregated subsystems. Such emergence of biological function provides the substrate for the expression of degeneracy, the ability of disparate combinations of subsystems to yield similar function. Here, we present evidence for the expression of degeneracy in morphologically realistic models of dentate gyrus granule cells (GC) through functional integration of disparate ion-channel combinations. We performed a 45-parameter randomized search spanning 16 active and passive ion channels, each biophysically constrained by their gating kinetics and localization profiles, to search for valid GC models. Valid models were those that satisfied 17 sub- and supra-threshold cellular-scale electrophysiological measurements from rat GCs. A vast majority (>99%) of the 15,000 random models were not electrophysiologically valid, demonstrating that arbitrarily random ion-channel combinations wouldn\'t yield GC functions. The 141 valid models (0.94% of 15,000) manifested heterogeneities in and cross-dependencies across local and propagating electrophysiological measurements, which matched with their respective biological counterparts. Importantly, these valid models were widespread throughout the parametric space and manifested weak cross-dependencies across different parameters. These observations together showed that GC physiology could neither be obtained by entirely random ion-channel combinations nor is there an entirely determined single parametric combination that satisfied all constraints. The complexity, the heterogeneities in measurement and parametric spaces, and degeneracy associated with GC physiology should be rigorously accounted for, while assessing GCs and their robustness under physiological and pathological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水性锌离子电池(AZIB)有望在满足日益增长的储能需求和为便携式电子产品供电方面发挥关键作用,以实现其卓越的安全性。负担能力,和环保的特点。然而,不利的副反应发生在锌阳极和枝晶引起的不均匀镀锌/剥离极大地损害了AZIB的循环寿命,从而阻碍了他们的实际前景。在这项研究中,通过将阳离子的“静电屏蔽”效应与阴离子的特征吸附相结合,采用了界面调制策略。两摩尔的ZnSO4作为基质,和羟乙基磺酸钠(SHES)被选为低成本,无毒添加剂。实验结果证实,SHES和锌阳极表现出强大的相互作用,导致在界面处形成静电屏蔽和动态吸附层,从而抑制析氢和腐蚀。钠离子的“静电屏蔽”效应和羟乙基磺酸阴离子的强大特征吸附的组合用于指导Zn2的定向三维(3D)扩散,促进快速,稳定,和锌的均匀沉积。由于这些影响,加入0.2MSHES作为添加剂可将循环寿命延长到3600小时以上,并在对称电池中实现高度可逆的沉积和剥离过程。此外,Zn-Cu半电池表现出超过1400个循环的可靠循环,实现99.6%的平均库仑效率。此外,这种添加剂的引入显著提高了Zn-MnO2和Zn-NH4V4O10全电池的性能。本研究证明了在AZIB中通过实施涉及在界面处吸附阴离子的策略实现具有高可逆性的阳极的实际可行性。这对AZIB的实际应用具有至关重要的意义。
    Aqueous zinc-ion batteries (AZIBs) are poised to play a pivotal part in meeting the growing demands for energy storage and powering portable electronics for their superior security, affordability, and environmentally friendly characteristics. However, the detrimental side reactions occurring at the zinc anode and the dendrite caused by uneven zinc plating/stripping have greatly compromised the cycling life of AZIBs, thereby impeding their practical prospects. In this study, the interfacial comodulation strategy was employed by combining the \"electrostatic shielding\" effect of cations with the characteristic adsorption of anions. Two molar ZnSO4 served as the matrix, and sodium hydroxyethyl sulfonate (SHES) was selected as a low-cost, nontoxic additive. Experimental results confirm that SHES and zinc anode exhibit robust interactions that lead to the formation of an electrostatic shield and a dynamic adsorption layer at the interface, thereby suppressing hydrogen evolution and corrosion. The combined \"electrostatic shielding\" effect of sodium ions and the robust characteristic adsorption of hydroxyethyl sulfonate anions serve to guide the directed three-dimensional (3D) diffusion of Zn2+, facilitating rapid, stable, and uniform deposition of zinc. Due to these effects, incorporating 0.2 M SHES as an additive extends the cycle life beyond 3600 h and enables a highly reversible process of deposition and stripping in symmetric cells. Additionally, the Zn-Cu half-cell exhibits reliable cycling for over 1400 cycles, achieving an average Coulombic efficiency of 99.6%. Moreover, the introduction of this additive substantially enhances the performance of Zn-MnO2 and Zn-NH4V4O10 full cells. This study demonstrates the practical feasibility of achieving anodes with high reversibility in AZIBs through the implementation of a strategy that involves anion adsorption at the interface, which holds paramount significance for the practical application of AZIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号