Deep tumor penetration

深部肿瘤穿透
  • 文章类型: Journal Article
    癌症是对人类健康的重大威胁,传统化疗药物的使用受到其严重副作用的限制。肿瘤靶向纳米载体已经成为解决这一问题的一种有希望的解决方案,因为它们可以将药物直接输送到肿瘤部位,提高药物的有效性,减少不良反应。然而,大多数纳米药物的功效受到实体瘤渗透不良的阻碍。纳米马达,能够将各种形式的能量转化为机械能进行自我推进运动,为增强向深部肿瘤区域的药物输送提供了潜在的解决方案。外力驱动的纳米马达,比如那些由磁场或超声波驱动的,提供精确的控制,但往往需要笨重和昂贵的外部设备。生物驱动的纳米电机,由精子推动,巨噬细胞,或细菌,利用生物分子进行自我推进,非常适合生理环境。然而,它们受到有限寿命的限制,速度不足,和潜在的免疫反应。为了解决这些问题,纳米马达已经被设计成通过在肿瘤微环境中催化内在的“燃料”来推动自身向前发展。这种机制有助于它们穿透生物屏障,允许它们到达深部肿瘤区域进行靶向药物递送。在这方面,本文综述了肿瘤微环境可激活的纳米马达(以过氧化氢为燃料,尿素,精氨酸),并讨论了他们在临床翻译中的前景和挑战,旨在为安全提供新的见解,高效,和癌症治疗中的精确治疗。
    Cancer represents a significant threat to human health, with the use of traditional chemotherapy drugs being limited by their harsh side effects. Tumor-targeted nanocarriers have emerged as a promising solution to this problem, as they can deliver drugs directly to the tumor site, improving drug effectiveness and reducing adverse effects. However, the efficacy of most nanomedicines is hindered by poor penetration into solid tumors. Nanomotors, capable of converting various forms of energy into mechanical energy for self-propelled movement, offer a potential solution for enhancing drug delivery to deep tumor regions. External force-driven nanomotors, such as those powered by magnetic fields or ultrasound, provide precise control but often necessitate bulky and costly external equipment. Bio-driven nanomotors, propelled by sperm, macrophages, or bacteria, utilize biological molecules for self-propulsion and are well-suited to the physiological environment. However, they are constrained by limited lifespan, inadequate speed, and potential immune responses. To address these issues, nanomotors have been engineered to propel themselves forward by catalyzing intrinsic \"fuel\" in the tumor microenvironment. This mechanism facilitates their penetration through biological barriers, allowing them to reach deep tumor regions for targeted drug delivery. In this regard, this article provides a review of tumor microenvironment-activatable nanomotors (fueled by hydrogen peroxide, urea, arginine), and discusses their prospects and challenges in clinical translation, aiming to offer new insights for safe, efficient, and precise treatment in cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米药物的临床应用面临着安全性提高但由于化疗药物的瘤内生物利用度差而疗效受限的困境。我们在这里设计了一种酶沉默的纳米海绵,它具有长期的寿命,可以可逆地呼气/吸入阿霉素(DOX),用于连续的细胞间传递和改善的肿瘤内保留。纳米海绵由覆盖透明质酸衍生物聚两性电解质核心的阳离子脂质组成,用于包封DOX和透明质酸酶-1靶向的siRNA(siHyal1),和用融合肽4F-tLyP-1修饰的脂蛋白壳,该融合肽与载脂蛋白A-I(apoA-I)模拟肽4F和tLyP-1融合,用于肿瘤归巢和外渗到肿瘤间质中。由细胞内/细胞间pH变化触发,纳米海绵核心可以在内体/溶酶体(pH5.0)中可逆地膨胀以释放DOX。由于去质子化,纳米海绵核心收缩回细胞质(pH7.4),以重新加载DOX,并在通过高尔基体分泌到细胞外基质(pH6.8)后继续这种行为,这极大地改善了肿瘤内DOX的保留和可用性。同时,通过siHyal1特异性沉默延长了纳米海绵的肿瘤内寿命,确保穿梭多层肿瘤细胞时载体和药物的时空一致性。因此,纳米海绵在99.1%的肿瘤球体和80.1%的原位肿瘤模型中实现了有效的肿瘤抑制。总的来说,这项研究提供了一种智能纳米海绵设计,用于主动细胞间中继药物递送,实现改善肿瘤内药物的生物利用度和增强实体瘤的化疗。
    The clinical application of nanomedicines faces the dilemma of improved safety but restricted efficacy due to the poor intratumoral bioavailability of chemotherapeutics. We here design an enzyme-silenced nanosponge that shares a long-term lifespan to reversibly exhale/inhale doxorubicin (DOX) for continuous intercellular relay delivery and improved intratumoral retention. The nanosponge is composed of a cationic lipid overlaying a hyaluronic acid derivative polyampholyte core for enveloping of DOX and hyaluronidase-1-targeted siRNA (siHyal1), and a lipoprotein shell decorated with fusion peptide 4F-tLyP-1 that was fused with apolipoprotein A-I (apoA-I) mimetic peptide 4F and tLyP-1 for tumor homing and extravasation into the tumor interstitium. Triggered by the intra/intercellular pH variation, the nanosponge core could reversibly swell in endo/lysosome (pH 5.0) for DOX release. Owing to the deprotonation, the nanosponge core shrinks back in cytoplasm (pH 7.4) for DOX reloading and continues the behavior after being secreted to the extracellular matrix (pH 6.8) via Golgi apparatus, which dramatically improves intratumoral DOX retention and availability. Concurrently, the intratumoral lifespan of the nanosponge is prolonged by siHyal1-specific silencing, ensuring spatiotemporal consistency of carrier and drug when shuttling multilayer tumor cells. As a result, the nanosponge achieves efficient tumor inhibition in 99.1% of tumor spheroids and 80.1% of orthotopic tumor models. Collectively, this study provides an intelligent nanosponge design for active intercellular relay drug delivery, achieving improved intratumoral bioavailability of drugs and amplified chemotherapy on solid tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多形性胶质母细胞瘤(GBM)在临床上仍然无法治愈,基于纳米技术的药物递送策略在缓解GBM方面显示出有希望的前景,而有限的血脑屏障(BBB)渗透,短暂的血液半衰期伴随着不良的肿瘤积累和渗透,显著限制了治疗结果。在这里,开发了一种基于羧基甜菜碱(CB)两性离子官能化超支化聚碳酸酯(HPCB)的通用超小型两性离子纳米系统(MCB(S)),以克服脑内输送的挑战。用氨基官能化IR780(游离IR780)接枝后,最终的紫杉醇(PTX)封装的胶束(MCB(S)-IR@PTX)被近红外(NIR)精确激活,以加速药物释放和有效的GBM联合治疗。重要的是,MCB(S)-IR@PTX具有交联结构,CB两性离子延长血液循环,和CB-两性离子进一步促进BBB通过甜菜碱/γ-氨基丁酸(GABA)转运蛋白-1(BGT-1)途径。结合超级小尺寸的好处,MCB(S)-IR@PTX在肿瘤部位高度积累并深入渗透,从而有效抑制U87MG原位GBM小鼠模型的肿瘤生长并显著改善生存时间。巧妙的纳米平台提供了一种多功能的策略,用于将治疗剂输送到大脑并实现有效的脑癌治疗。
    Glioblastoma multiforme (GBM) remains incurable in clinical, nanotechnology-based drug delivery strategies show promising perspective in alleviating GBM, while limited blood-brain-barrier (BBB) permeation, short blood half-live accompanied by the poor tumor accumulation and penetration, significantly restrict the therapeutic outcomes. Herein, a versatile super-small zwitterionic nano-system (MCB(S)) based on carboxybetaine (CB) zwitterion functionalized hyperbranched polycarbonate (HPCB) is developed to overcome the brain delivery challenges. After grafting with amino-functionalized IR780 (free IR780), the ultimate paclitaxel (PTX)-encapsulated micelles (MCB(S)-IR@PTX) are precisely activated by near-infrared (NIR) for accelerated drug release and effective combinational GBM therapy. Importantly, MCB(S)-IR@PTX with the crosslinked structure and CB zwitterion prolongs blood-circulation, and CB-zwitterion further facilitates BBB-traversing through betaine/γ-aminobutyric acid (GABA) transporter-1 (BGT-1) pathway. Combined with the benefit of super small-size, MCB(S)-IR@PTX highly accumulates at tumor sites and penetrates deeply, thus efficiently inhibiting tumor growth and strikingly improving survival time in U87MG orthotopic GBM-bearing mouse model. The ingenious nanoplatform furnishes a versatile strategy for delivering therapeutics into the brain and realizing efficient brain cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞凋亡是一种活跃的跨细胞运输途径,已引起人们对克服纳米药物在实体瘤中有限的深度渗透的兴趣。在这项研究中,设计了一种电荷可转换的纳米药物,通过胞吞作用促进向实体瘤的深度渗透。它是一种基于白蛋白的磷酸钙纳米药物,装载有IR820(mAlb-820@CaP),用于高分辨率光声成像和增强的光热治疗。表面上的生物矿化在循环期间稳定白蛋白-IR820复合物,并在酸性环境中降解时提供钙离子(Ca2+)用于组织渗透。通过2D细胞中Caveolae介导的内吞作用和钙离子诱导的胞吐作用,3D球体,和体内肿瘤模型被证明。值得注意的是,使用高分辨率光声系统在体内观察纳米药物的外渗和渗透能力,纳米药物在体内显示出最有效的光热抗肿瘤作用。总的来说,该策略为非侵入性光声成像和纳米医学深度渗透产生的高治疗效率提供了一个通用的治疗平台.
    Transcytosis is an active transcellular transportation pathway that has garnered interest for overcoming the limited deep penetration of nanomedicines in solid tumors. In this study, a charge-convertible nanomedicine that facilitates deep penetration into solid tumors via transcytosis is designed. It is an albumin-based calcium phosphate nanomedicine loaded with IR820 (mAlb-820@CaP) for high-resolution photoacoustic imaging and enhanced photothermal therapy. Biomineralization on the surface stabilizes the albumin-IR820 complex during circulation and provides calcium ions (Ca2+ ) for tissue penetration on degradation in an acidic environment. pH-triggered transcytosis of the nanomedicine enabled by caveolae-mediated endocytosis and calcium ion-induced exocytosis in 2D cellular, 3D spheroid, and in vivo tumor models is demonstrated. Notably, the extravasation and penetration ability of the nanomedicine is observed in vivo using a high-resolution photoacoustic system, and nanomedicine shows the most potent photothermal antitumor effect in vivo. Overall, the strategy provides a versatile theragnosis platform for both noninvasive photoacoustic imaging and high therapeutic efficiency resulting from deep penetration of nanomedicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    吲哚菁绿(ICG)由于其优越的光物理特性而被用于医学诊断。然而,这些优点被其快速的身体间隙和较差的光稳定性所抵消。在这项工作中,创建了用于针对鼻咽癌(NPC)的化学疗法/PDT/PTT的可编程前药载体,以增加光稳定性并绕过生化障碍。通过树枝状聚合物-DOX/ICG/TPP(DIT-PAMAM)和聚乙二醇化聚(α-硫辛酸)(PLA)共聚物,可主动深入渗透到NPC肿瘤中并在激光照射下产生深度光疗和选择性药物释放的可编程前药载体(PEG-PLA@DIT-PAMAM)。长的循环时间和对哺乳动物细胞的最小毒性是PEG包被的载体的两个益处。NPC的肿瘤细胞或血管内皮细胞上的过表达的GSH分解了PEG-g-PLA链,并在载体到达NPC肿瘤外周后释放了DIT-PAMAM纳米颗粒。小,带正电荷的DIT-PAMAM纳米颗粒可以有效地穿透肿瘤并在肿瘤内保留一段延长的时间。此外,诱导的ROS裂解了DOX和纳米颗粒的硫代金属接头和产物热疗(PTT),以在激光照射下杀死癌细胞,通过DOX的可编程出版物促进纳米颗粒的更快扩散和更有效的肿瘤渗透。可编程前药载体显示高光稳定性高光稳定性,实现了非常有效的PDT,PTT,和肿瘤特异性DOX释放。为了结合化疗的效果,PDT,和PTT对抗NPC,这项研究显示了可编程前药载体的巨大功效。
    Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大尺寸纳米颗粒的肿瘤摄取是由增强的渗透性和保留(EPR)效应介导的,根据肿瘤表型,具有可变的积累和异质的肿瘤组织渗透。通过特异性靶向的纳米载体的性能具有改善成像对比度和体内治疗功效的潜力,同时增加深组织穿透性。为了解决这个假设,我们设计并合成了靶向前列腺癌的starPEG纳米载体(40kDa,15nm),[89Zr]PEG-(DFB)3(ACUPA)1和[89Zr]PEG-(DFB)1(ACUPA)3,具有一个或三个前列腺特异性膜抗原(PSMA)靶向的ACUPA配体。将靶向纳米载体的体外PSMA结合亲和力和体内药代动力学与非靶向starPEG进行了比较,[89Zr]PEG-(DFB)4,在PSMA+PC3-Pip和PSMA-PC3-Flu细胞中,和异种移植。增加ACUPA配体的数量改善了PEG衍生的聚合物对PC3-Pip细胞的体外结合亲和力。虽然两种PSMA靶向纳米载体都能显著提高PC3-Pip肿瘤的组织穿透性,多价[89Zr]PEG-(DFB)1(ACUPA)3显示出明显更高的PC3-Pip/血液比率和背景清除。相比之下,非靶向的[89Zr]PEG-(DFB)4显示低EPR介导的积累,肿瘤组织渗透性差。总的来说,在低EPRPC3-Pip异种移植物中,ACUPA缀合的靶向starPEG显着改善肿瘤保留与深层肿瘤组织渗透。这些数据表明,用多价ACUPA配体靶向PSMA可能是增加纳米载体递送至前列腺癌的普遍适用策略。这些具有高肿瘤结合和低健康组织保留的靶向多价纳米载体可用于成像和治疗应用。
    Tumoral uptake of large-size nanoparticles is mediated by the enhanced permeability and retention (EPR) effect, with variable accumulation and heterogenous tumor tissue penetration depending on the tumor phenotype. The performance of nanocarriers via specific targeting has the potential to improve imaging contrast and therapeutic efficacy in vivo with increased deep tissue penetration. To address this hypothesis, we designed and synthesized prostate cancer-targeting starPEG nanocarriers (40 kDa, 15 nm), [89Zr]PEG-(DFB)3(ACUPA)1 and [89Zr]PEG-(DFB)1(ACUPA)3, with one or three prostate-specific membrane antigen (PSMA)-targeting ACUPA ligands. The in vitro PSMA binding affinity and in vivo pharmacokinetics of the targeted nanocarriers were compared with a nontargeted starPEG, [89Zr]PEG-(DFB)4, in PSMA+ PC3-Pip and PSMA- PC3-Flu cells, and xenografts. Increasing the number of ACUPA ligands improved the in vitro binding affinity of PEG-derived polymers to PC3-Pip cells. While both PSMA-targeted nanocarriers significantly improved tissue penetration in PC3-Pip tumors, the multivalent [89Zr]PEG-(DFB)1(ACUPA)3 showed a remarkably higher PC3-Pip/blood ratio and background clearance. In contrast, the nontargeted [89Zr]PEG-(DFB)4 showed low EPR-mediated accumulation with poor tumor tissue penetration. Overall, ACUPA conjugated targeted starPEGs significantly improve tumor retention with deep tumor tissue penetration in low EPR PC3-Pip xenografts. These data suggest that PSMA targeting with multivalent ACUPA ligands may be a generally applicable strategy to increase nanocarrier delivery to prostate cancer. These targeted multivalent nanocarriers with high tumor binding and low healthy tissue retention could be employed in imaging and therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    已经广泛研究了具有各种尺寸和形态的金纳米颗粒(AuNP)用于针对多种癌症类型的有效光热疗法(PTT)。然而,高度动态和复杂的肿瘤微环境(TME)通过限制AuNP的深层肿瘤渗透,大大降低了PTT的疗效。在这里,我们提出了一种间充质干细胞(MSC)介导的深层肿瘤递送金纳米棒(AuNR)作为一种有效的PTT。首先,用四酰化N-叠氮基胺(Ac4ManNAz)处理MSC,以通过代谢糖工程在细胞表面上引入可修饰的叠氮化物(N3)基团。然后,用双环[6.1.0]壬炔(AuNR@BCN)的生物正交点击分子修饰的AuNRs通过无铜点击化学反应与MSC表面上的N3基团化学缀合,产生AuNR@MSC。在培养的MSCs中,优化了将AuNR并入MSC的适当条件;此外,评估了AuNR-MSCs在光照射下的光热效率,在体外显示出有效的产热。在结肠荷瘤小鼠中,静脉注射的AuNR@MSC由于AuNR@MSC的自然肿瘤嗜性引起的肿瘤归巢效应而允许深层组织渗透,从而有效地在肿瘤组织内积累。在局部光照射下,与常规AuNR相比,AuNR@MSC通过增强的光热效应显著抑制结肠肿瘤生长。总的来说,这项研究显示了MSCs介导的AuNR深层肿瘤递送有效PTT的有希望的方法。
    Gold nanoparticles (AuNPs) with various sizes and morphologies have been extensively investigated for effective photothermal therapy (PTT) against multiple cancer types. However, a highly dynamic and complex tumor microenvironment (TME) considerably reduces the efficacy of PTT by limiting deep tumor penetration of AuNPs. Herein, we propose a mesenchymal stem cell (MSC)-mediated deep tumor delivery of gold nanorod (AuNR) for a potent PTT. First, MSCs are treated with tetraacylated N-azidomannosamine (Ac4ManNAz) to introduce modifiable azide (N3) groups on the cell surface via metabolic glycoengineering. Then, AuNRs modified with bio-orthogonal click molecules of bicyclo[6.1.0]nonyne (AuNR@BCN) are chemically conjugated to the N3 groups on the MSC surface by copper-free click chemistry reaction, resulting in AuNR@MSCs. In cultured MSCs, the appropriate condition to incorporate the AuNR into the MSCs is optimized; in addition, the photothermal efficiency of AuNR-MSCs under light irradiation are assessed, showing efficient heat generation in vitro. In colon tumor-bearing mice, intravenously injected AuNR@MSCs efficiently accumulate within the tumor tissues by allowing deep tissue penetration owing to the tumor homing effect by natural tumor tropism of AuNR@MSCs. Upon localized light irradiation, the AuNR@MSCs significantly inhibit colon tumor growth by the enhanced photothermal effect compared to conventional AuNRs. Collectively, this study shows a promising approach of MSCs-mediated deep tumor delivery of AuNR for effective PTT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物功能表面改性在生物相容性和药物递送效率方面超越了氧化石墨烯(GO)的关键限制,有助于多种生物医学应用。这里,具有高载药量的蛋白质电晕桥接GO纳米平台,长期的高热,和可控的药物释放,被设计用于放大肿瘤治疗益处。在结构上,GO表面安装有苯基硼酸(PBA)层,在其上,iRGD结合载脂蛋白A-I(iRGD-apoA-I)通过硼电子缺乏进行协调,以形成三明治状GO纳米片(iAPG)。通过iRGD-apoA-I电晕进行的GO伪装通过π-π堆叠和配位提供了多峰高阿霉素(DOX)负载,同时产生较高的光热转化效率。体外研究表明,iAPG显着改善药物渗透和内化,然后通过近红外(NIR)控制的内/溶酶体破坏实现肿瘤靶向的DOX释放。此外,与体内游离DOX相比,iAPG介导的位点特异性药物穿梭产生3.53倍的肿瘤药物积累增强,并显著诱导肿瘤的深层渗透。进一步证明了原发性肿瘤消融和自发性转移抑制,在最佳NIR下副作用可忽略不计。一起来看,我们的工作为无机纳米材料提供了多功能蛋白质电晕策略,以实现有利的生物医学应用。
    Biofunctional surface-modification surpassed critical limitation of graphene oxide (GO) in biocompatibility and drug delivery efficiency, contributing to versatile biomedical applications. Here, a protein corona-bridged GO nanoplatform with high drug loading, longstanding hyperthermia, and controllable drug release, was engineered for amplified tumor therapeutic benefits. Structurally, GO surface was installed with phenylboronic acid (PBA) layer, on which iRGD conjugated apolipoprotein A-I (iRGD-apoA-I) was coordinated via boron electron-deficiency, to form the sandwich-like GO nanosheet (iAPG). The GO camouflaging by iRGD-apoA-I corona provided multimodal high doxorubicin (DOX) loading by π-π stacking and coordination, and generated a higher photothermal transformation efficiency simultaneously. In vitro studies demonstrated that iAPG significantly improved drug penetration and internalization, then achieved tumor-targeted DOX release through near-infrared (NIR) controlled endo/lysosome disruption. Moreover, iAPG mediated site-specific drug shuttling to produce a 3.53-fold enhancement of tumor drug-accumulation compared to the free DOX in vivo, and induced deep tumor penetration dramatically. Primary tumor ablation and spontaneous metastasis inhibition were further demonstrated with negligible side effects under optimal NIR. Taken together, our work provided multifunctional protein corona strategy to inorganic nanomaterials toward advantageous biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在实体瘤中常规治疗剂的非特异性生物分布和差的渗透性严重损害了抗肿瘤功效。在这里,我们报道了由二十二碳六烯酸(DHA)和尼可地尔(NI)组成的级联肿瘤治疗纳米平台,即DNP,在肿瘤细胞中特异性产生细胞毒性剂以及扩张血管以增加肿瘤内氧化应激水平。包埋在膜中的DHA可以产生活性氧(ROS),同时NI响应于肿瘤中的细胞内谷胱甘肽(GSH)而产生一氧化氮(NO)。值得注意的是,这两种功能物种可以进一步原位反应形成更具杀瘤活性的氮物种(RNS),导致选择性级联扩增的抗肿瘤性能。此外,因此,NO诱导的血管舒张可以导致一系列功能,包括缺氧缓解和深部肿瘤运输。总的来说,我们预计DNP可以通过响应肿瘤细胞的内部环境选择性产生RNS前体来实现缺氧正常化和肿瘤抑制,从而显示出肿瘤特异性治疗的巨大潜力。
    Nonspecific biodistribution and poor permeability of conventional therapeutic agents in solid tumors severely compromised the antitumor efficacy. Herein, we report a cascade tumor therapeutic nanoplatform consisting of docosahexaenoic acid (DHA) and nicorandil (NI), namely DNP, to specifically produce cytotoxic agents in tumor cells as well as dilating blood vessels to increase the intratumoral oxidative stress levels. The DHA embedded in the membrane could generate reactive oxygen species (ROS) meanwhile NI produced nitric oxide (NO) in response to intracellular glutathione (GSH) in tumors. Notably, the two functional species could further react in situ to form a more tumoricidal reactive nitrogen species (RNS), causing selectively cascade amplification of antitumor performance. In addition, NO-induced vasodilation could consequently result in a series of functions, including hypoxia relief and deep tumor transportation. In general, we anticipate that the DNP could show great potential for tumor-specific treatment by selectively producing RNS precursors in response to the interior environment of tumor cells for hypoxia normalization and tumor inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在第二窗口(NIR-II)使用近红外光进行局部肿瘤光热治疗是触发用于癌症治疗的原位肿瘤疫苗接种(ISTV)的有希望的策略。然而,肿瘤内光热剂的有限渗透严重限制了它们产生足够的肿瘤相关抗原的空间效应,ISTV成功的关键因素。在这项研究中,纳米佐剂系统是基于NIR-II可吸收的金纳米星制造的,该纳米星装饰有透明质酸酶和用于ISTV的免疫刺激寡脱氧核苷酸CpG。纳米佐剂通过松弛肿瘤的致密细胞外基质而显示出深度的肿瘤渗透能力。在NIR-II光照射下,纳米佐剂显著抑制肿瘤生长,诱导一系列免疫反应,对再次攻击的癌症产生明显的适应性免疫,增强了abscopal效应,并完全抑制肺转移。该研究强调了一种先进的纳米佐剂制剂,其特征是NIR-II触发的ISTV的深度肿瘤渗透。
    Local tumor photothermal treatment with the near-infrared light at the second window (NIR-II) is a promising strategy in triggering the in situ tumor vaccination (ISTV) for cancer therapy. However, limited penetration of photothermal agents within tumors seriously limits their spatial effect in generating sufficient tumor-associated antigens, a key factor to the success of ISTV. In this study, a nano-adjuvant system is fabricated based on the NIR-II-absorbable gold nanostars decorated with hyaluronidases and immunostimulatory oligodeoxynucleotides CpG for ISTV. The nano-adjuvant displays a deep tumor penetration capacity via loosening the dense extracellular matrix of tumors. Upon NIR-II light irradiation, the nano-adjuvant significantly inhibits the tumor growth, induces a cascade of immune responses, generates an obvious adaptive immunity against the re-challenged cancers, boosts the abscopal effect, and completely inhibits the pulmonary metastases. The study highlights an advanced nano-adjuvant formulation featuring deep tumor penetration for NIR-II-triggered ISTV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号