DNA-PKcs

DNA - PKcs
  • 文章类型: Journal Article
    DNA双链断裂(DSB)被认为是最有害的DNA损伤形式之一。这些DSB通过非同源末端连接(NHEJ)和同源重组(HR)途径修复,并且这些过程中的缺陷可导致基因组不稳定并促进肿瘤发生。磷酸酶和Tensin同源物(PTEN)在HR修复中至关重要。然而,它在NHEJ修复途径中的参与仍然难以捉摸。在这项研究中,我们研究了PTEN在NHEJ修复途径中的表观遗传调控功能。我们的发现表明,PTEN的磷酸化和磷酸酶活性都是有效的NHEJ介导的DSB修复所必需的。在DNA损伤反应中,我们观察到关键NHEJ蛋白的表达和染色质附着减少,包括Ku70/80,DNA-PKcs,XRCC4和XLF,在PTEN-null单元格中。这种减少归因于这些NHEJ蛋白的不稳定性,正如我们的蛋白质半衰期测定所证实的。我们已经证明了DNA-PKcs抑制剂,NU7026抑制DNA损伤诱导的PTENC末端磷酸化。因此,我们的研究表明PTEN可能是DNA-PKcs的靶标。蛋白质-蛋白质对接分析还显示PTEN与DNA-PKcs的C末端区域相互作用。PTEN无效细胞在DNA损伤后表现出受损的DNA-PKcs灶,因为它处于超磷酸化状态。磷酸化-PTEN通过维持其也取决于其磷酸酶活性的低磷酸化状态来帮助在DNA损伤位点上募集DNA-PKcs。因此,DNA损伤后,PTEN和DNA-PKcs之间的串扰调节NHEJ途径。因此,在DNA损伤期间,PTEN被DNA-PKcs直接或间接磷酸化并附着在染色质上,导致DNA-PKcs去磷酸化,随后在染色质上募集其他NHEJ因子,以有效执行NHEJ途径。因此,我们的研究提供了对PTEN的表观遗传调控及其在控制NHEJ途径中的重要作用的分子理解.
    DNA double-strand breaks (DSBs) are considered one of the most harmful forms of DNA damage. These DSBs are repaired through non-homologous end joining (NHEJ) and homologous recombination (HR) pathways and defects in these processes can lead to genomic instability and promote tumorigenesis. Phosphatase and Tensin homolog (PTEN) are crucial in HR repair. However, its involvement in the NHEJ repair pathway has remained elusive. In this study, we investigate the function of epigenetic regulation of PTEN in the NHEJ repair pathway. Our findings indicate that both the phosphorylation and phosphatase activity of PTEN are required for efficient NHEJ-mediated DSB repair. During the DNA damage response, we observed a reduced expression and chromatin attachment of the key NHEJ proteins, including Ku70/80, DNA-PKcs, XRCC4, and XLF, in PTEN-null cells. This reduction was attributed to the instability of these NHEJ proteins, as confirmed by our protein half-life assay. We have demonstrated that the DNA-PKcs inhibitor, NU7026, suppresses the DNA damage-induced phosphorylation of the C-terminal of PTEN. Thus, our study indicates that PTEN could be a target of DNA-PKcs. Protein-protein docking analysis also shows that PTEN interacts with the C-terminal region of DNA-PKcs. PTEN null cells exhibit compromised DNA-PKcs foci after DNA damage as it is in a hyper-phosphorylated state. Phospho-PTEN assists in recruiting DNA-PKcs on the DNA damage site by maintaining its hypo-phosphorylated state which also depends on its phosphatase activity. Therefore, after DNA damage, crosstalk between PTEN and DNA-PKcs modulates the NHEJ pathway. Thus, during DNA damage, PTEN gets phosphorylated directly or indirectly by DNA-PKcs and attaches to chromatin, resulting in the dephosphorylation of DNA-PKcs and subsequently recruitment of other NHEJ factors on chromatin occurs for efficient execution of the NHEJ pathway. Thus, our research provides a molecular understanding of the epigenetic regulation of PTEN and its significant role in controlling the NHEJ pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    关键的DNA修复酶DNA-PKcs具有几个重要的细胞功能。小鼠DNA-PKcs活性的丧失揭示了在免疫和神经系统中的重要作用。在人类中,DNA-PKcs是大脑发育和功能的关键因素,因为prkdc基因的突变会导致严重的神经功能缺损,如小头畸形和癫痫发作。预测DNA-PKcs在神经元中的未知作用。在这里,我们表明DNA-PKcs调节突触可塑性。我们证明DNA-PKcs定位于突触并在新鉴定的控制PSD-95蛋白稳定性的残基处磷酸化PSD-95。DNA-PKcs-/-小鼠的特征是长期增强(LTP)受损,神经元形态的变化,和降低突触后蛋白的水平。当在DNA-PKcs-/-小鼠中过表达时,组成型磷酸化的PSD-95突变体挽救LTP损伤。我们的研究确定了DNA-PKcs在调节神经元可塑性方面的新兴生理功能,超越基因组稳定性。
    The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA-PKcs是参与DNA修复和反应途径的关键蛋白质靶标,其异常活性与各种癌症的发生和进展密切相关。在这项研究中,我们采用了基于深度学习的筛选和基于分子动力学(MD)模拟的管道,确定八个候选DNA-PKcs目标。随后的实验揭示了三种小分子(5025-0002、M769-1095和V008-1080)对DNA-PKcs介导的细胞增殖的有效抑制。这些分子表现出抗癌活性,IC50(抑制浓度为50%)值为152.6μM,30.71μM,和74.84μM,分别。值得注意的是,V008-1080增强由CRISPR/Cas9介导的同源定向修复(HDR),同时抑制非同源末端连接(NHEJ)效率。对结构-活性关系的进一步研究揭示了这些小分子与DNA-PKcs之间的结合位点和关键相互作用。这是DeepBindGCN_RG在实际药物筛选任务中的初次运用,一种新型DNA-PKcs抑制剂的成功发现证明了其作为筛选流程中核心成分的有效性。此外,这项研究为探索新的抗癌疗法和通过靶向DNA-PKcs推进基因编辑技术的发展提供了重要的见解。
    DNA-PKcs is a crucial protein target involved in DNA repair and response pathways, with its abnormal activity closely associated with the occurrence and progression of various cancers. In this study, we employed a deep learning-based screening and molecular dynamics (MD) simulation-based pipeline, identifying eight candidates for DNA-PKcs targets. Subsequent experiments revealed the effective inhibition of DNA-PKcs-mediated cell proliferation by three small molecules (5025-0002, M769-1095, and V008-1080). These molecules exhibited anticancer activity with IC50 (inhibitory concentration at 50%) values of 152.6 μM, 30.71 μM, and 74.84 μM, respectively. Notably, V008-1080 enhanced homology-directed repair (HDR) mediated by CRISPR/Cas9 while inhibiting non-homologous end joining (NHEJ) efficiency. Further investigations into the structure-activity relationships unveiled the binding sites and critical interactions between these small molecules and DNA-PKcs. This is the first application of DeepBindGCN_RG in a real drug screening task, and the successful discovery of a novel DNA-PKcs inhibitor demonstrates its efficiency as a core component in the screening pipeline. Moreover, this study provides important insights for exploring novel anticancer therapeutics and advancing the development of gene editing techniques by targeting DNA-PKcs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非同源末端连接途径对DNA双链断裂的修复是由Ku与DNA末端的结合引发的。多种Ku蛋白在体外加载到线性DNA上。然而,在细胞中,Ku负载限制在每个DNA末端1-2个分子。执行这一限制的机制目前尚不清楚。这里,我们表明,DNA依赖性蛋白激酶(DNA-PKcs)的催化亚基,但不是它的蛋白激酶活性,需要防止过度的Ku进入染色质。Ku的积累进一步受到两种机制的限制:neddylation/FBXL12依赖性过程在整个细胞周期中主动去除负载的Ku分子,以及在S期运行的CtIP/ATM依赖性机制。最后,我们证明了Ku负载的错误调节导致DNA末端附近的转录受损。一起,我们的数据揭示了防止Ku侵入染色质和干扰其他DNA交易的多种机制.
    Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胰岛素样生长因子结合蛋白-2(IGFBP-2)在介导乳腺癌细胞化疗耐药中的作用已得到证实,但作用机制尚不清楚。本研究旨在进一步探讨IGFBP-2在依托泊苷诱导MCF-7,T47D(ER+ve)DNA损伤反应中的作用。和MDA-MB-231(ER-ve)乳腺癌细胞系。在存在或不存在依托泊苷的情况下,在ER阳性细胞系中使用siRNA沉默IGFBP-2,或将外源IGFBP-2添加到ER阴性MDA-MB-231细胞中。使用锥虫蓝染料排阻试验评估细胞数量和死亡,使用全细胞裂解物的蛋白质印迹监测蛋白质丰度的变化,并使用免疫荧光和细胞分级分离确定定位和丰度。ER阳性细胞系的结果表明,暴露于依托泊苷后,IGFBP-2的缺失增强了细胞死亡,这与P-DNA-PKcs的减少和γH2AX的增加有关。相反,ER阴性细胞,在依托泊苷存在下添加IGFBP-2导致细胞存活,P-DNA-PKcs的增加,和γH2AX的减少。总之,IGFBP-2是乳腺癌细胞的生存因子,与DNA修复机制的增强有关。
    The role if insulin-like growth factor binding protein-2 (IGFBP-2) in mediating chemoresistance in breast cancer cells has been demonstrated, but the mechanism of action is unclear. This study aimed to further investigate the role of IGFBP-2 in the DNA damage response induced by etoposide in MCF-7, T47D (ER+ve), and MDA-MB-231 (ER-ve) breast cancer cell lines. In the presence or absence of etoposide, IGFBP-2 was silenced using siRNA in the ER-positive cell lines, or exogenous IGFBP-2 was added to the ER-negative MDA-MB-231 cells. Cell number and death were assessed using trypan blue dye exclusion assay, changes in abundance of proteins were monitored using Western blotting of whole cell lysates, and localization and abundance were determined using immunofluorescence and cell fractionation. Results from ER-positive cell lines demonstrated that upon exposure to etoposide, loss of IGFBP-2 enhanced cell death, and this was associated with a reduction in P-DNA-PKcs and an increase in γH2AX. Conversely, with ER-negative cells, the addition of IGFBP-2 in the presence of etoposide resulted in cell survival, an increase in P-DNA-PKcs, and a reduction in γH2AX. In summary, IGFBP-2 is a survival factor for breast cancer cells that is associated with enhancement of the DNA repair mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:基因组的维持对细胞的存活至关重要,和DNA损伤反应的损害与多种病理有关,包括癌症和神经系统异常。DNA-PKcs是一种DNA修复蛋白,是经典非同源末端连接途径的核心组成部分,但它也有调节基因表达的作用,细胞对DNA损伤的整体反应。方法:使用产生野生型(WT)或无激酶活性(KR)DNA-PKcs的细胞,我们评估了不存在或存在DNA损伤时基因表达的整体改变.我们评估了未处理细胞中的差异基因表达,并观察了与细胞粘附相关的基因的差异。细胞周期调节,和炎症相关途径。接触依托泊苷后,我们比较了KR和WT细胞对DNA损伤的转录反应。结果:下调基因主要涉及蛋白质,糖,以及两种基因型的核酸生物合成途径,但是丰富的生物途径是不同的,与WT细胞相比,KR细胞再次表现出更强烈的炎症反应。为了确定哪些主要的转录调节因子控制着注意到的基因表达差异,我们使用通路分析,发现许多组蛋白修饰的主要调节因子,促炎途径,细胞周期调节,Wnt/β-连环蛋白信号传导,细胞发育和分化受DNA-PKcs状态的影响。最后,我们已经使用qPCR来验证差异调节途径中的选定基因,以验证RNA序列数据.结论:总体而言,我们的结果表明,DNA-PKCS,以激酶依赖性的方式,减少基因毒性损伤后的促炎信号。由于多种DNA-PK激酶抑制剂在临床试验中作为与DNA损伤剂组合使用的癌症治疗剂,了解DNA-PKcs不能磷酸化下游靶标时的转录反应将告知患者对联合治疗的总体反应。
    Background: Maintenance of the genome is essential for cell survival, and impairment of the DNA damage response is associated with multiple pathologies including cancer and neurological abnormalities. DNA-PKcs is a DNA repair protein and a core component of the classical nonhomologous end-joining pathway, but it also has roles in modulating gene expression and thus, the overall cellular response to DNA damage. Methods: Using cells producing either wild-type (WT) or kinase-inactive (KR) DNA-PKcs, we assessed global alterations in gene expression in the absence or presence of DNA damage. We evaluated differential gene expression in untreated cells and observed differences in genes associated with cellular adhesion, cell cycle regulation, and inflammation-related pathways. Following exposure to etoposide, we compared how KR versus WT cells responded transcriptionally to DNA damage. Results: Downregulated genes were mostly involved in protein, sugar, and nucleic acid biosynthesis pathways in both genotypes, but enriched biological pathways were divergent, again with KR cells manifesting a more robust inflammatory response compared to WT cells. To determine what major transcriptional regulators are controlling the differences in gene expression noted, we used pathway analysis and found that many master regulators of histone modifications, proinflammatory pathways, cell cycle regulation, Wnt/β-catenin signaling, and cellular development and differentiation were impacted by DNA-PKcs status. Finally, we have used qPCR to validate selected genes among the differentially regulated pathways to validate RNA sequence data. Conclusion: Overall, our results indicate that DNA-PKcs, in a kinase-dependent fashion, decreases proinflammatory signaling following genotoxic insult. As multiple DNA-PK kinase inhibitors are in clinical trials as cancer therapeutics utilized in combination with DNA damaging agents, understanding the transcriptional response when DNA-PKcs cannot phosphorylate downstream targets will inform the overall patient response to combined treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    α-突触核蛋白(αSyn)是一种突触前和核蛋白,聚集在重要的神经退行性疾病,如帕金森病(PD),帕金森病痴呆(PDD)和路易体痴呆(LBD)。我们过去的工作表明,在化学治疗剂博来霉素1诱导DNA损伤后,核αSyn可能调节HAP1细胞中DNA双链断裂(DSB)修复的形式。这里,我们报道,在HAP1细胞中使用基于染色体外质粒的修复试验,αSyn的遗传缺失会特异性损害DSB修复的非同源末端连接(NHEJ)途径。重要的是,使用CRISPR/Cas9慢病毒方法在精确的基因组位置诱导单个DSB也显示了αSyn在调节HAP1细胞和原代小鼠皮质神经元培养物中的NHEJ中的重要性。DSB修复的这种调节取决于DNA损伤反应信号激酶DNA-PKcs的活性,因为αSyn功能丧失的作用被DNA-PKcs抑制逆转。在诱导αSyn病理后,在小鼠皮层中使用体内多光子成像,我们发现在Polo样激酶(PLK)抑制后,包涵神经元的纵向细胞存活增加,这与夹杂物中聚集的αSyn量的增加有关。一起,这些发现表明,αSyn在调节转化细胞系和原代皮质神经元中的DSB修复中起着重要的生理作用。这种核功能的丧失可能导致PD中检测到的神经元基因组不稳定,PDD和DLB,并指出DNA-PKcs和PLK是潜在的治疗靶标。
    α-synuclein (αSyn) is a presynaptic and nuclear protein that aggregates in important neurodegenerative diseases such as Parkinson\'s Disease (PD), Parkinson\'s Disease Dementia (PDD) and Lewy Body Dementia (LBD). Our past work suggests that nuclear αSyn may regulate forms of DNA double-strand break (DSB) repair in HAP1 cells after DNA damage induction with the chemotherapeutic agent bleomycin1. Here, we report that genetic deletion of αSyn specifically impairs the non-homologous end-joining (NHEJ) pathway of DSB repair using an extrachromosomal plasmid-based repair assay in HAP1 cells. Importantly, induction of a single DSB at a precise genomic location using a CRISPR/Cas9 lentiviral approach also showed the importance of αSyn in regulating NHEJ in HAP1 cells and primary mouse cortical neuron cultures. This modulation of DSB repair is dependent on the activity of the DNA damage response signaling kinase DNA-PKcs, since the effect of αSyn loss-of-function is reversed by DNA-PKcs inhibition. Using in vivo multiphoton imaging in mouse cortex after induction of αSyn pathology, we find an increase in longitudinal cell survival of inclusion-bearing neurons after Polo-like kinase (PLK) inhibition, which is associated with an increase in the amount of aggregated αSyn within inclusions. Together, these findings suggest that αSyn plays an important physiologic role in regulating DSB repair in both a transformed cell line and in primary cortical neurons. Loss of this nuclear function may contribute to the neuronal genomic instability detected in PD, PDD and DLB and points to DNA-PKcs and PLK as potential therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脓毒症诱发的心肌病(SIC)是全身性感染的严重并发症,以显著的心功能不全为特征。这项研究探讨了DNA依赖性蛋白激酶催化亚基(DNA-PKcs)和InvertedFormin2(INF2)在SIC发病机理中的作用。关注它们对线粒体稳态和动力学的影响。我们的研究表明,沉默DNA-PKcs可减轻脂多糖(LPS)诱导的心肌细胞死亡和功能障碍。使用LPS处理的HL-1心肌细胞,我们观察到DNA-PKcs敲低显著逆转LPS诱导的细胞毒性,表明对细胞损伤的保护作用。caspase-3和caspase-9激活的减少进一步证实了这种作用。细胞凋亡的关键标志物,在DNA-PKcs敲低后。此外,我们的数据进一步表明,DNA-PKcs敲除减弱LPS诱导的线粒体功能障碍,ATP产量的提高证明了这一点,增强线粒体呼吸复合物的活性,并保留了线粒体膜电位。此外,DNA-PKcs缺失可抵消LPS诱导的线粒体裂变转移,表明其对线粒体动力学的调节作用。最后,我们的研究阐明了DNA-PKcs和INF2在脓毒症诱导的心肌病过程中调节线粒体功能和动力学的复杂相互作用.这些发现为支持SIC的分子机制提供了新的见解,并提出了在这种危急状态下减轻线粒体功能障碍的潜在治疗靶标。
    Sepsis-induced cardiomyopathy (SIC) represents a severe complication of systemic infection, characterized by significant cardiac dysfunction. This study examines the role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Inverted Formin 2 (INF2) in the pathogenesis of SIC, focusing on their impact on mitochondrial homeostasis and dynamics. Our research demonstrates that silencing DNA-PKcs alleviates lipopolysaccharide (LPS)-induced cardiomyocyte death and dysfunction. Using HL-1 cardiomyocytes treated with LPS, we observed that DNA-PKcs knockdown notably reverses LPS-induced cytotoxicity, indicating a protective role against cellular damage. This effect is further substantiated by the reduction in caspase-3 and caspase-9 activation, key markers of apoptosis, upon DNA-PKcs knockdown. Besides, our data further reveal that DNA-PKcs knockdown attenuates LPS-induced mitochondrial dysfunction, evidenced by improved ATP production, enhanced activities of mitochondrial respiratory complexes, and preserved mitochondrial membrane potential. Moreover, DNA-PKcs deletion counteracts LPS-induced shifts towards mitochondrial fission, indicating its regulatory influence on mitochondrial dynamics. Conclusively, our research elucidates the intricate interplay between DNA-PKcs and INF2 in the modulation of mitochondrial function and dynamics during sepsis-induced cardiomyopathy. These findings offer new insights into the molecular mechanisms underpinning SIC and suggest potential therapeutic targets for mitigating mitochondrial dysfunction in this critical condition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    原理:在脓毒症急性肾损伤期间,DNA依赖性蛋白激酶催化亚基(DNA-PKcs)促进病理性线粒体裂变。12SrRNAc型(MOTS-c)的线粒体开放阅读框是线粒体衍生的肽,在心血管疾病期间表现出抗炎特性。我们探讨了内毒素血症引起的心肌微血管损伤是否涉及DNA-PKcs和MOTS-c失调。方法:在体内诱导内毒素血症,内皮细胞特异性DNA-PKcs敲除小鼠腹膜内注射单剂量的脂多糖(10mg/kg),并在72h后进行评估。结果:脂多糖暴露增加了心脏微血管内皮细胞的DNA-PKcs活性,而DNA-PKcs的药理学抑制或内皮细胞特异性遗传消融可减轻脂多糖诱导的心肌微血管功能障碍。蛋白质组学分析显示内皮DNA-PKcs消融主要改变线粒体蛋白表达。验证试验证实DNA-PKcs通过病理性线粒体裂变诱导mtDNA断裂而大幅抑制MOTS-c转录。抑制MOTS-c中和DNA-PKcs消融的内皮保护作用,而补充MOTS-c可增强脂多糖应激下的内皮屏障功能和心肌微血管稳态。在分子研究中,MOTS-c下调抑制c-Jun氨基末端激酶(JNK),允许JNK磷酸化profilin-S173。抑制JNK或用profilin磷酸化缺陷型突变体转染细胞可通过防止脂多糖处理后的F-肌动蛋白解聚和层状体降解来改善内皮屏障功能。结论:内毒素血症期间DNA-PKcs失活可能是恢复MOTS-c表达的有价值的治疗策略,防止JNK诱导的profilin磷酸化,改善F-肌动蛋白聚合,增强层状完整性,最终改善内皮屏障功能,减轻心肌微血管损伤。
    Rationale: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promotes pathological mitochondrial fission during septic acute kidney injury. The mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is a mitochondria-derived peptide that exhibits anti-inflammatory properties during cardiovascular illnesses. We explored whether endotoxemia-induced myocardial microvascular injury involved DNA-PKcs and MOTS-c dysregulation. Methods: To induce endotoxemia in vivo, endothelial cell-specific DNA-PKcs-knockout mice were injected intraperitoneally with a single dose of lipopolysaccharide (10 mg/kg) and evaluated after 72 h. Results: Lipopolysaccharide exposure increased DNA-PKcs activity in cardiac microvascular endothelial cells, while pharmacological inhibition or endothelial cell-specific genetic ablation of DNA-PKcs reduced lipopolysaccharide-induced myocardial microvascular dysfunction. Proteomic analyses showed that endothelial DNA-PKcs ablation primarily altered mitochondrial protein expression. Verification assays confirmed that DNA-PKcs drastically repressed MOTS-c transcription by inducing mtDNA breaks via pathological mitochondrial fission. Inhibiting MOTS-c neutralized the endothelial protective effects of DNA-PKcs ablation, whereas MOTS-c supplementation enhanced endothelial barrier function and myocardial microvascular homeostasis under lipopolysaccharide stress. In molecular studies, MOTS-c downregulation disinhibited c-Jun N-terminal kinase (JNK), allowing JNK to phosphorylate profilin-S173. Inhibiting JNK or transfecting cells with a profilin phosphorylation-defective mutant improved endothelial barrier function by preventing F-actin depolymerization and lamellipodial degradation following lipopolysaccharide treatment. Conclusions: DNA-PKcs inactivation during endotoxemia could be a worthwhile therapeutic strategy to restore MOTS-c expression, prevent JNK-induced profilin phosphorylation, improve F-actin polymerization, and enhance lamellipodial integrity, ultimately ameliorating endothelial barrier function and reducing myocardial microvascular injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    非同源末端连接途径对DNA双链断裂的修复是由Ku与DNA末端的结合引发的。鉴于其对目标的高度亲和力,多种Ku蛋白在体外加载到线性DNA上。然而,在细胞中,Ku负载限制在每个DNA末端1-2个分子。执行此限制的机制目前未知。在这里,我们显示了DNA依赖性蛋白激酶(DNA-PKcs)的催化亚基,但不是它的蛋白激酶活性,需要防止过度的Ku进入染色质。Ku的积累进一步受到两种机制的限制:neddylation/FBXL12依赖性过程在整个细胞周期中主动去除负载的Ku分子,以及在S期起作用的CtIP/ATM依赖性机制。最后,我们证明了Ku负载的错误调节导致DNA末端附近的转录受损。我们的数据一起揭示了多层协调机制,以防止Ku入侵染色质并干扰其他DNA交易。
    DNA-PKcs在结构上阻止Ku滑入人类和非洲爪鱼的染色质Neddylation/FBXL12依赖性机制限制了Ku在S相中在色谱上的积累,ATM/CtIP克服了Ku积累在没有DNA-PKcs的情况下,DNA末端附近的转录被抑制。
    DNA末端结合蛋白Ku可以滑动到裸露的DNA上,但这在细胞中受到限制。使用人类细胞和非洲爪狼卵提取物,DNA-PKcs被认为是Ku进入染色质的主要结构障碍,以及两种在没有DNA-PKcs的情况下限制Ku积累的活性机制。
    Repair of DNA double strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Given its high affinity for ends, multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ~1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unknown. Here we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process which actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism which operates in S-phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together our data shed light on the multiple layers of coordinated mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号