DNA-PK

DNA - PK
  • 文章类型: Journal Article
    药物滥用继续对艾滋病毒控制工作构成重大挑战。在我们的调查中,我们发现,可卡因不仅上调DNA依赖性蛋白激酶(DNA-PK)的表达,而且通过在S2056增强其磷酸化作用,从而增强DNA-PK的激活.此外,DNA-PK磷酸化触发DNA-PK易位到细胞核中。可卡因促进DNA-PK核易位的发现进一步证实了我们对可卡因暴露后HIV长末端重复序列(LTR)处DNA-PK募集增强的观察。通过激活和促进DNA-PK的核易位,可卡因有效地协调了HIV转录的多个阶段,从而促进HIV复制。此外,我们的研究表明,可卡因诱导的DNA-PK促进RNA聚合酶II(RNAPII)羧基末端结构域(CTD)在Ser5和Ser2位点的过度磷酸化,增强起始和伸长阶段,分别,HIV转录。可卡因通过激活细胞周期蛋白依赖性激酶7(CDK7)和随后的CDK9磷酸化进一步支持其转录起始和延伸的增强,从而促进正转录延伸因子b(P-TEFb)活性。我们第一次证明可卡因,通过DNA-PK激活,促进TRIM28在丝氨酸824的特异性磷酸化(p-TRIM28,S824)。这种修饰将TRIM28从转录抑制剂转化为HIV转录的反式激活因子。此外,我们观察到TRIM28(p-TRIM28,S824)的磷酸化促进HIV转录从暂停阶段到延伸阶段的过渡,从而促进全长HIV基因组转录物的产生。这一发现证实了在Ser2上观察到的增强的RNAPIICTD磷酸化,Ser2是转录延伸的标记,可卡因暴露后。因此,在可卡因治疗后,我们观察到在HIVLTR中p-TRIM28-(S824)的募集增加。总的来说,我们的研究结果揭示了可卡因诱导HIV转录和基因表达的复杂分子机制.这些发现为开发旨在减轻可卡因对HIV感染者的有害影响的高度靶向疗法提供了希望。
    可卡因上调DNA-PK的表达和活性。可卡因在S2056选择性增强DNA-PK的磷酸化,这是一种翻译后修饰,标志着DNA-PK的功能活性形式。可卡因增强DNA-PK的核易位。DNA-PK抑制严重损害HIV转录,复制,和延迟重新激活。可卡因通过分别增强Ser5和Ser2的RNAPIICTD磷酸化来促进HIV的起始和延伸阶段,通过刺激DNA-PK.可卡因还通过刺激CDK7(TFIIH的激酶)和CDK9(P-TEFb的激酶亚基)来支持HIV转录的起始和延伸阶段。分别。可卡因介导的DNA-PK激活通过逆转暂停因子TRIM28的抑制作用并通过催化其在S824位点的磷酸化将其转化为反式激活剂来缓解RNAPII的暂停。因此,可卡因,通过激活DNA-PK,促进HIV转录的多个阶段,即,initiation,RNAPII暂停释放,和伸长率。
    Drug abuse continues to pose a significant challenge in HIV control efforts. In our investigation, we discovered that cocaine not only upregulates the expression of DNA-dependent protein kinase (DNA-PK) but also augments DNA-PK activation by enhancing its phosphorylation at S2056. Moreover, DNA-PK phosphorylation triggers the translocation of DNA-PK into the nucleus. The finding that cocaine promotes nuclear translocation of DNA-PK further validates our observation of enhanced DNA-PK recruitment at the HIV long terminal repeat (LTR) following cocaine exposure. By activating and facilitating the nuclear translocation of DNA-PK, cocaine effectively orchestrates multiple stages of HIV transcription, thereby promoting HIV replication. Additionally, our study indicates that cocaine-induced DNA-PK promotes hyper-phosphorylation of RNA polymerase II (RNAP II) carboxyl-terminal domain (CTD) at Ser5 and Ser2 sites, enhancing both initiation and elongation phases, respectively, of HIV transcription. Cocaine\'s enhancement of transcription initiation and elongation is further supported by its activation of cyclin-dependent kinase 7 (CDK7) and subsequent phosphorylation of CDK9, thereby promoting positive transcriptional elongation factor b (P-TEFb) activity. We demonstrate for the first time that cocaine, through DNA-PK activation, promotes the specific phosphorylation of TRIM28 at Serine 824 (p-TRIM28, S824). This modification converts TRIM28 from a transcriptional inhibitor to a transactivator for HIV transcription. Additionally, we observe that phosphorylation of TRIM28 (p-TRIM28, S824) promotes the transition from the pausing phase to the elongation phase of HIV transcription, thereby facilitating the production of full-length HIV genomic transcripts. This finding corroborates the observed enhanced RNAP II CTD phosphorylation at Ser2, a marker of transcriptional elongation, following cocaine exposure. Accordingly, upon cocaine treatment, we observed elevated recruitment of p-TRIM28-(S824) at the HIV LTR. Overall, our results have unraveled the intricate molecular mechanisms underlying cocaine-induced HIV transcription and gene expression. These findings hold promise for the development of highly targeted therapeutics aimed at mitigating the detrimental effects of cocaine in individuals living with HIV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这里,我们报告了同时抑制三种主要的DNA损伤识别PI3激酶样激酶(PIKKs)-ATM,ATR,和DNA-PK-在哺乳动物细胞中诱导严重的组合合成致死性。利用中国仓鼠细胞系CHO和V79及其各自的PIKK突变体,我们评估了抑制这三种激酶对细胞活力的影响,DNA损伤反应,和染色体完整性。我们的结果表明,虽然单或双激酶抑制增加细胞毒性,抑制所有三种PIKK导致显著更高的协同致死率,染色体畸变,和DNA双链断裂(DSB)诱导,如通过它们的协同作用评分计算的。这些发现表明,ATM的重叠冗余,ATR,DNA-PK功能对细胞存活至关重要,它们的联合抑制作用极大地破坏了DNA损伤信号和修复过程,导致细胞死亡。这项研究为多靶向DDR激酶抑制作为一种有效的抗癌策略的潜力提供了见解。需要进一步研究以阐明潜在的机制和治疗应用。
    Here we report that simultaneous inhibition of the three primary DNA damage recognition PI3 kinase-like kinases (PIKKs) -ATM, ATR, and DNA-PK- induces severe combinatorial synthetic lethality in mammalian cells. Utilizing Chinese hamster cell lines CHO and V79 and their respective PIKK mutants, we evaluated effects of inhibiting these three kinases on cell viability, DNA damage response, and chromosomal integrity. Our results demonstrate that while single or dual kinase inhibition increased cytotoxicity, inhibition of all three PIKKs results in significantly higher synergistic lethality, chromosomal aberrations, and DNA double-strand break (DSB) induction as calculated by their synergy scores. These findings suggest that the overlapping redundancy of ATM, ATR, and DNA-PK functions is critical for cell survival, and their combined inhibition greatly disrupts DNA damage signaling and repair processes, leading to cell death. This study provides insights into the potential of multi-targeted DDR kinase inhibition as an effective anticancer strategy, necessitating further research to elucidate underlying mechanisms and therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非同源末端连接途径对DNA双链断裂的修复是由Ku与DNA末端的结合引发的。多种Ku蛋白在体外加载到线性DNA上。然而,在细胞中,Ku负载限制在每个DNA末端1-2个分子。执行这一限制的机制目前尚不清楚。这里,我们表明,DNA依赖性蛋白激酶(DNA-PKcs)的催化亚基,但不是它的蛋白激酶活性,需要防止过度的Ku进入染色质。Ku的积累进一步受到两种机制的限制:neddylation/FBXL12依赖性过程在整个细胞周期中主动去除负载的Ku分子,以及在S期运行的CtIP/ATM依赖性机制。最后,我们证明了Ku负载的错误调节导致DNA末端附近的转录受损。一起,我们的数据揭示了防止Ku侵入染色质和干扰其他DNA交易的多种机制.
    Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,我们对人类细胞对辐射的DNA损伤反应的理解显着增加,尽管一些值得注意的信号事件仍有待发现。在这里,我们简要介绍了反应的关键分子事件,以反映对所涉及的关键潜在机制的当前理解。
    Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鉴于它在生活中的核心作用,DNA非常容易损坏。双链断裂(DSBs)是毒性最强的DNA损伤形式,和DSB对基因组完整性构成最大的危险。在高等脊椎动物中,非同源末端连接途径(NHEJ)是修复DSBs的主要途径。NHEJ有三个步骤:1)DNA依赖性蛋白激酶[DNA-PK]的DNA末端识别,2)由众多NHEJ辅助因子进行的DNA末端加工,和3)通过DNA连接酶IV复合物(LX4)的DNA末端连接。虽然这似乎是一个相对简单的机制,越来越明显的是,事实并非如此。最近,通过冷冻EM研究的增殖,关于非同源末端连接的机制已经获得了很多见解,由这些新的结构数据提供的结构-功能突变实验,和新颖的单分子成像方法。该领域的一个新兴共识是,NHEJ从DNA-PK的初始DSB末端识别发展到远程突触复合物中两个DNA末端的突触,其中末端相距太远(115µ)以进行连接,然后发展到一个短程突触复合体,其中末端的位置足够近,可以连接。从这些结构研究中令人惊讶的是观察到代表NHEJ长程复合物的两种不同类型的DNA-PK二聚体。在这次审查中,我们总结了有关不同NHEJ突触复合物功能的最新知识,并将这一新信息与新兴的细胞单分子显微镜研究以及先前关于DNA-PK修复功能的研究进行对照.
    Given its central role in life, DNA is remarkably easy to damage. Double strand breaks (DSBs) are the most toxic form of DNA damage, and DSBs pose the greatest danger to genomic integrity. In higher vertebrates, the non-homologous end joining pathway (NHEJ) is the predominate pathway that repairs DSBs. NHEJ has three steps: 1) DNA end recognition by the DNA dependent protein kinase [DNA-PK], 2) DNA end-processing by numerous NHEJ accessory factors, and 3) DNA end ligation by the DNA ligase IV complex (LX4). Although this would appear to be a relatively simple mechanism, it has become increasingly apparent that it is not. Recently, much insight has been derived regarding the mechanism of non-homologous end joining through a proliferation of cryo-EM studies, structure-function mutational experiments informed by these new structural data, and novel single-molecule imaging approaches. An emerging consensus in the field is that NHEJ progresses from initial DSB end recognition by DNA-PK to synapsis of the two DNA ends in a long-range synaptic complex where ends are held too far apart (115 Å) for ligation, and then progress to a short-range synaptic complex where ends are positioned close enough for ligation. What was surprising from these structural studies was the observation of two distinct types of DNA-PK dimers that represent NHEJ long-range complexes. In this review, we summarize current knowledge about the function of the distinct NHEJ synaptic complexes and align this new information with emerging cellular single-molecule microscopy studies as well as with previous studies of DNA-PK\'s function in repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将HIV-1基因组的DNA拷贝整合到细胞基因组中会导致一系列的损伤,修复对于病毒的成功复制至关重要。我们以前已经证明了ATM和DNA-PK激酶,通常负责修复细胞DNA中的双链断裂,需要启动HIV-1DNA整合后修复,即使整合不会导致DNA双链断裂。在这项研究中,我们分析了ATM磷酸化状态的变化(pSer1981),DNA-PK(pSer2056),及其相关激酶ATR(pSer428),以及他们的目标:Chk1(pSer345),Chk2(pThr68),H2AX(pSer139),和p53(pSer15)在HIV-1DNA整合后修复。我们已经证明ATM和DNA-PK,但不是ATR,在整合后的DNA修复过程中经历自磷酸化,并磷酸化其靶蛋白Chk2和H2AX。这些数据表明了HIV-1DNA的双链DNA断裂修复和整合后修复之间的共同信号机制。
    Integration of the DNA copy of HIV-1 genome into the cellular genome results in series of damages, repair of which is critical for successful replication of the virus. We have previously demonstrated that the ATM and DNA-PK kinases, normally responsible for repairing double-strand breaks in the cellular DNA, are required to initiate the HIV-1 DNA postintegrational repair, even though integration does not result in DNA double-strand breaks. In this study, we analyzed changes in phosphorylation status of ATM (pSer1981), DNA-PK (pSer2056), and their related kinase ATR (pSer428), as well as their targets: Chk1 (pSer345), Chk2 (pThr68), H2AX (pSer139), and p53 (pSer15) during the HIV-1 DNA postintegrational repair. We have shown that ATM and DNA-PK, but not ATR, undergo autophosphorylation during postintegrational DNA repair and phosphorylate their target proteins Chk2 and H2AX. These data indicate common signaling mechanisms between the double-strand DNA break repair and postintegrational repair of HIV-1 DNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    部署DNA损伤反应(DDR)对抗各种形式的DNA损伤,确保基因组稳定性。癌细胞对基因组不稳定性的倾向提供了通过抑制DDR途径选择性杀死癌细胞的治疗机会。DNA依赖性蛋白激酶(DNA-PK),核丝氨酸/苏氨酸激酶,对于DNA双链断裂(DSB)修复中的非同源末端连接(NHEJ)途径至关重要。因此,靶向DNA-PK是一种有前途的癌症治疗策略.本文综述了DNA-PK及其相关大蛋白的结构,以及DNA-PK抑制剂的发展过程,以及其临床应用的最新进展。我们强调我们对基于不同支架的DNA-PK抑制剂的开发过程和结构-活性关系(SARs)的分析。我们希望这篇综述将为未来寻求开发新的DNA-PK抑制剂的研究人员提供实用信息。
    The deployment of DNA damage response (DDR) combats various forms of DNA damage, ensuring genomic stability. Cancer cells\' propensity for genomic instability offers therapeutic opportunities to selectively kill cancer cells by suppressing the DDR pathway. DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is crucial for the non-homologous end joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs). Therefore, targeting DNA-PK is a promising cancer treatment strategy. This review elaborates on the structures of DNA-PK and its related large protein, as well as the development process of DNA-PK inhibitors, and recent advancements in their clinical application. We emphasize our analysis of the development process and structure-activity relationships (SARs) of DNA-PK inhibitors based on different scaffolds. We hope this review will provide practical information for researchers seeking to develop novel DNA-PK inhibitors in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    KU异二聚体(KU70/80)迅速募集至DNA双链断裂(DSB)以调节其加工和修复。先前的工作表明,KU80中的氨基末端vonWillebrand样(vWA样)结构域具有保守的疏水口袋,该口袋与称为Ku结合基序(KBM)的短肽基序相互作用。KBM存在于多种DNA修复蛋白中,如APLF、CYREN,和Werner蛋白(WRN)。这里,为了研究KBM介导的蛋白质-蛋白质相互作用对KU80功能的重要性,我们使用KU80缺陷的中国仓鼠卵巢(Xrs-6)细胞转染RFP标记的野生型人KU80或具有突变体vWA样结构域(KU80L68R)的KU80。令人惊讶的是,而突变型RFP-KU80L68R在KU80缺陷型Xrs-6细胞中大部分或完全恢复了NHEJ效率和抗辐射性,它未能恢复细胞对喜树碱(CPT)或羟基脲(HU)诱导的DNA复制应激的抗性。此外,表达RFP-KU80L68R的KU80缺陷型Xrs-6细胞在用CPT或HU处理后以S/G2期依赖性方式积累了泛核γH2AX,这表明KU80与一种或多种含KBM蛋白的结合对于DNA复制应激过程中出现的DNA末端的加工和/或修复是必需的。与这个想法一致,WRN解旋酶/外切核酸酶的消耗概括了CPT诱导的γH2AX表型,并在认识论上对KU80vWA样结构域进行了突变。这些数据确定了KU80结合KBM在CHO细胞对停滞和/或塌陷的DNA复制叉的反应和抗性中的作用。并暗示KU80与WRN的KBM介导的相互作用是该作用的关键效应物。
    The KU heterodimer (KU70/80) is rapidly recruited to DNA double-strand breaks (DSBs) to regulate their processing and repair. Previous work has revealed that the amino-terminal von Willebrand-like (vWA-like) domain in KU80 harbours a conserved hydrophobic pocket that interacts with a short peptide motif known as the Ku-binding motif (KBM). The KBM is present in a variety of DNA repair proteins such as APLF, CYREN, and Werner protein (WRN). Here, to investigate the importance of KBM-mediated protein-protein interactions for KU80 function, we employed KU80-deficient Chinese Hamster Ovary (Xrs-6) cells transfected with RFP-tagged wild-type human KU80 or KU80 harbouring a mutant vWA-like domain (KU80L68R). Surprisingly, while mutant RFP-KU80L68R largely or entirely restored NHEJ efficiency and radiation resistance in KU80-deficient Xrs-6 cells, it failed to restore cellular resistance to DNA replication stress induced by camptothecin (CPT) or hydroxyurea (HU). Moreover, KU80-deficient Xrs-6 cells expressing RFP-KU80L68R accumulated pan-nuclear γH2AX in an S/G2-phase-dependent manner following treatment with CPT or HU, suggesting that the binding of KU80 to one or more KBM-containing proteins is required for the processing and/or repair of DNA ends that arise during DNA replication stress. Consistent with this idea, depletion of WRN helicase/exonuclease recapitulated the CPT-induced γH2AX phenotype, and did so epistatically with mutation of the KU80 vWA-like domain. These data identify a role for the KBM-binding by KU80 in the response and resistance of CHO cells to arrested and/or collapsed DNA replication forks, and implicate the KBM-mediated interaction of KU80 with WRN as a critical effector of this role.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    三阴性乳腺癌(TNBC)仍然是最致命的乳腺癌亚型,其特点是对当前化疗的应答率很低,并且缺乏其他有效的治疗选择。虽然大约30%的患者对基于蒽环类和紫杉烷的标准治疗化疗方案反应良好,大多数患者的临床结果改善有限,强调了在TNBC中提高蒽环类/紫杉烷类化疗有效性的策略的迫切需要。在这项研究中,我们报道了DNA-PK抑制剂的潜力,peposertib,为了提高拓扑异构酶II(TOPOII)抑制剂的有效性,尤其是蒽环类药物,在TNBC。我们的体外研究证明了peposertib与多柔比星的协同抗增殖活性,多种TNBC细胞系中的表柔比星和依托泊苷。下游分析显示在联合治疗下ATM依赖性代偿信号和p53途径激活的诱导。这些体外发现通过在携带皮下植入肿瘤的小鼠中观察到的明显的抗肿瘤作用得到证实。我们建立了一种耐受性良好的临床前治疗方案,将peposertib与聚乙二醇化脂质体多柔比星(PLD)相结合,并在体内细胞系来源和患者来源的TNBC异种移植模型中显示出强大的抗肿瘤功效。一起来看,我们的研究结果提供了证据,证明与peposertib联合治疗有可能增强蒽环类/TOPOII型化疗的疗效,它为改善TNBC患者的治疗结果提供了一个有希望的策略。
    Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    卵巢癌是妇科癌症死亡的主要原因。在最具创新性的抗癌方法中,合成致死性的遗传概念是多基因的突变协同作用以影响细胞死亡。先前的研究发现,尽管牛痘相关激酶1(VRK1)与DNA损伤修复蛋白相关,其潜在机制仍不清楚。这里,我们发现VRK1在卵巢肿瘤中高表达,VRK1耗竭能显著促进细胞凋亡和细胞周期阻滞。VRK1敲低对细胞凋亡的影响表现为DNA损伤增加,基因组不稳定性,和细胞凋亡,并通过使DNA-PK不稳定来阻断非同源末端连接(NHEJ)。Further,我们验证了VRK1耗竭增强了对PARP抑制剂(PARPi)的敏感性,奥拉帕利,通过DNA损伤促进细胞凋亡,特别是在VRK1高表达的卵巢癌细胞系中。与DNA损伤反应有关的蛋白质是开发新的抗癌治疗策略的合适靶标。它们的组合可以代表合成杀伤力的另一种形式。因此,通过将奥拉帕尼与VRK1的消除相结合,可以损害正常的保护性DNA损伤反应,并且可以用于减少药物剂量及其相关毒性。总之,VRK1代表PARPi敏感性的潜在生物标志物,和一个新的DDR相关的治疗靶点,卵巢癌。
    Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号