DNA metallization

  • 文章类型: Journal Article
    金属等离子体纳米结构具有等离子体共振的光学性质,这在纳米光子学中具有巨大的发展潜力,生物电子学,和分子检测。然而,开发一种通用和直接的方法来制备具有可控尺寸和形态的金属等离子体纳米结构仍然是一个挑战。在这里,我们提出了一种合成策略,该策略利用可定制的自组装模板进行金属结构的形状定向生长。我们使用金纳米粒子(AuNP)作为连接器和DNA纳米管作为分支,通过调整连接器和分支之间的组装比例来定制具有不同分支的金纳米颗粒-DNA折纸复合纳米结构。随后,使用这种模板形状引导策略创建了等离子体金属纳米结构的各种形态,表现出表面增强拉曼散射(SERS)信号的增强。这种策略为合成具有多种形态的金属纳米结构提供了一种新方法,并为开发具有更广泛应用的可定制金属等离子体结构开辟了另一种可能性。
    The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA折纸是以纳米精度折叠三维DNA结构的强大工具。它的用法,然而,由于高离子强度而受到限制,温度低于60°C,需要5到10之间的pH值,以确保DNA折纸纳米结构的结构完整性。这里,我们证明了一种简单有效的方法,可以使用[PdCl4]2-在苛刻的缓冲条件下稳定DNA折纸纳米结构。它提供了不同的DNA折纸纳米结构对机械压缩的稳定性,温度高达100°C,双蒸水,pH值在4到12之间。此外,DNA折纸上层建筑和结合的货物稳定,产量高达98%。为了证明我们方法的普遍适用性,我们采用了高温下的Pd金属化程序。在未来,我们认为我们的方法为DNA折纸纳米结构的应用开辟了新的可能性,超出了它们通常的反应条件。
    DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl4]2-. It provided the stabilization of different DNA origami nanostructures against mechanical compression, temperatures up to 100 °C, double-distilled water, and pH values between 4 and 12. Additionally, DNA origami superstructures and bound cargos are stabilized with yields of up to 98%. To demonstrate the general applicability of our approach, we employed our protocol with a Pd metallization procedure at elevated temperatures. In the future, we think that our method opens up new possibilities for applications of DNA origami nanostructures beyond their usual reaction conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    食源性致病菌的检测对于保障食品安全至关重要。在本研究中,提出了一种便携式CRISPR-Cas12a触发光热生物传感器,该传感器集成了分支混合链反应(bHCR)和DNA金属化策略,用于敏感和视觉检测食源性病原体。剪切的探针被用来阻挡储物柜探针,这使得在没有目标细菌的情况下阻止bHCR的组装,而靶细菌可以通过CRISPR-Cas12a激活剪切探针的裂解。因此,储物柜探针起启动链的作用,触发由H1、H2和H3组成的分支双链DNA的形成。银粒子,原位沉积在DNA结构上,用作进行光热检测的信号因子。选择金黄色葡萄球菌和单核细胞增生李斯特菌作为食源性病原体,以验证该CRISPR-Cas12a触发的光热传感器平台的分析性能。该传感器具有灵敏的检测能力,检测极限为1CFU/mL,而浓度范围从100到108CFU/mL。此外,该方法可以有效检测多种食品样品中的目标细菌。研究结果表明,该策略可以作为开发便携式平台进行定量分析的有价值的参考。可视化,和高度敏感的食源性细菌检测。
    The detection of foodborne pathogens is crucial for ensuring the maintenance of food safety. In the present study, a portable CRISPR-Cas12a triggered photothermal biosensor integrating branch hybrid chain reaction (bHCR) and DNA metallization strategy for sensitive and visual detection of foodborne pathogens was proposed. The sheared probes were utilized to block the locker probes, which enabled preventing the assembly of bHCR in the absence of target bacteria, while target bacteria can activate the cleavage of sheared probes through CRISPR-Cas12a. Therefore, the locker probes functioned as initiating chains, triggering the formation of the branching double-stranded DNA consisting of H1, H2, and H3. The silver particles, which were in situ deposited on the DNA structure, functioned as a signal factor for conducting photothermal detection. Staphylococcus aureus and Listeria monocytogenes were selected as the foodborne pathogens to verify the analytical performance of this CRISPR-Cas12a triggered photothermal sensor platform. The sensor exhibited a sensitive detection with a low detection limit of 1 CFU/mL, while the concentration ranged from 100 to 108 CFU/mL. Furthermore, this method could efficiently detect target bacteria in multiple food samples. The findings demonstrate that this strategy can serve as a valuable reference for the development of a portable platform enabling quantitative analysis, visualization, and highly sensitive detection of foodborne bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA模板化金属化已成为产生具有所需构象和功能的纳米级金属DNA混合结构的有效策略。尽管DNA-金属杂种有潜力,它们作为组合治疗剂的用途很少被检查。在这里,我们提出了一种制造多用途DNA超结构的简单方法,该结构可用作有效的光免疫治疗剂。具体来说,我们通过诱导的局部还原将Au离子吸附并局部浓缩到DNA超结构上,导致Au纳米团簇的形成。这些金属纳米团簇的机械和光学性质可以通过其构象和金属离子来合理地控制。所得的金色DNA超结构(GDS)表现出显著的光热效应,其诱导癌细胞凋亡。当DNA的序列特异性免疫刺激作用结合在一起时,GDS提供了一种协同作用,以根除癌症和抑制转移,证明了作为肿瘤治疗组合治疗剂的潜力。总之,DNA超结构模板化金属铸造系统为未来的生物医学应用提供了有前途的材料。
    DNA-templated metallization has emerged as an efficient strategy for creating nanoscale-metal DNA hybrid structures with a desirable conformation and function. Despite the potential of DNA-metal hybrids, their use as combinatory therapeutic agents has rarely been examined. Herein, we present a simple approach for fabricating a multipurpose DNA superstructure that serves as an efficient photoimmunotherapy agent. Specifically, we adsorb and locally concentrate Au ions onto DNA superstructures through induced local reduction, resulting in the formation of Au nanoclusters. The mechanical and optical properties of these metallic nanoclusters can be rationally controlled by their conformations and metal ions. The resulting golden DNA superstructures (GDSs) exhibit significant photothermal effects that induce cancer cell apoptosis. When sequence-specific immunostimulatory effects of DNA are combined, GDSs provide a synergistic effect to eradicate cancer and inhibit metastasis, demonstrating potential as a combinatory therapeutic agent for tumor treatment. Altogether, the DNA superstructure-templated metal casting system offers promising materials for future biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA折纸模具允许金属纳米颗粒的形状控制生长。到目前为止,这种方法仅限于黄金和白银。这里,证明了具有受控长度和图案的线性钯纳米结构的制造。为了获得种子生长的成核中心,开发了使用双(对磺苯基)苯基膦(BSPP)作为还原剂和稳定剂的钯纳米颗粒(PdNP)的合成程序,以建立具有单链DNA的颗粒的有效功能化方案。将官能化颗粒附着到DNA模腔内的互补DNA链上支持随后的高度特异性的接种钯沉积。这提供了具有20-35nm直径的颗粒状形态的棒状PdNP。使用退火程序和氢气后还原步骤,可以获得均匀的钯纳米结构。随着该程序对钯的适应,基于模具的工具箱的功能得到了扩展。在未来,这可以允许模具方法容易地适应于较少贵金属,包括磁性材料如Ni和Co。
    DNA origami molds allow a shape-controlled growth of metallic nanoparticles. So far, this approach is limited to gold and silver. Here, the fabrication of linear palladium nanostructures with controlled lengths and patterns is demonstrated. To obtain nucleation centers for a seeded growth, a synthesis procedure of palladium nanoparticles (PdNPs) using Bis(p-sulfonatophenyl)phenylphosphine (BSPP) both as reductant and stabilizer is developed to establish an efficient functionalization protocol of the particles with single-stranded DNA. Attaching the functionalized particles to complementary DNA strands inside DNA mold cavities supports subsequently a highly specific seeded palladium deposition. This provides rod-like PdNPs with diameters of 20-35 nm of grainy morphology. Using an annealing procedure and a post-reduction step with hydrogen, homogeneous palladium nanostructures can be obtained. With the adaptation of the procedure to palladium the capabilities of the mold-based tool-box are expanded. In the future, this may allow a facile adaptation of the mold approach to less noble metals including magnetic materials such as Ni and Co.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过使用DNA金属化以原位产生电化学信号报告基因和杂交链反应(HCR)作为信号放大策略,构建了电化学DNA(E-DNA)传感器。使用循环伏安法(CV)技术来表征电化学固态Ag/AgCl过程。此外,引入了酶切技术,以减少背景信号,进一步提高识别精度。在这些技术的基础上,制备的E-DNA传感器对痕量ctDNA分析具有优异的传感性能,检测范围为0.5fM至10pM,检测限为7aM。提出的E-DNA传感器还显示出优异的选择性,满足重复性和稳定性,恢复得很好,所有这些都支持其在未来临床样本分析中的潜在应用。
    An electrochemical-DNA (E-DNA) sensor was constructed by using DNA metallization to produce an electrochemical signal reporter in situ and hybridization chain reaction (HCR) as signal amplification strategy. The cyclic voltammetry (CV) technique was used to characterize the electrochemical solid-state Ag/AgCl process. Moreover, the enzyme cleavage technique was introduced to reduce background signals and further improve recognition accuracy. On the basis of these techniques, the as-prepared E-DNA sensor exhibited superior sensing performance for trace ctDNA analysis with a detection range of 0.5 fM to 10 pM and a detection limit of 7 aM. The proposed E-DNA sensor also displayed excellent selectivity, satisfied repeatability and stability, and had good recovery, all of which supports its potential applications for future clinical sample analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    乙型肝炎病毒(HBV)感染与演变为人类肝炎疾病包括慢性肝炎的高风险密切相关。肝纤维化和肝硬化,还有肝癌.虽然已经开发了各种方法用于HBVDNA检测,他们中的大多数要么依赖于昂贵的仪器,要么依赖于涉及专业人员的繁琐程序。在这项研究中,我们首次建立了基于CRISPR-Cas12a的比色生物传感器,通过利用探针DNA调节Mxene探针DNA-Ag/Pt纳米杂交体的催化行为,用于目标HBV检测。在HBV的目标存在,Cas12a反式切割活性可以被有效激活以降解DNA探针,这导致DNA金属化和酶活性增强剂DNA吸附在Mxene上的抑制,导致催化活性显著降低。Mxene-探针DNA-Ag/Pt纳米杂交体表现出优异的灵敏度和特异性,具有亚皮摩尔检测限,以及用于测定人血清样品中目标HBVDNA的良好准确性和稳定性。此外,这种比色传感策略可以与智能手机平台集成,以实现对目标DNA的可见灵敏检测。一起来看,提出的比色法为HBVDNA诊断提供了一种新的方法,特别适合高地方病,工具和医疗支持有限的发展中国家。
    Hepatitis B virus (HBV) infection is closely associated with the high risk of evolving into human hepatitis diseases including chronic hepatitis, liver fibrosis and cirrhosis, as well as hepatoma. Although various methods have been developed for HBV DNA detection, most of them either rely on expensive instruments or laborious procedures involving professional personnel. In this study, we for the first time established the CRISPR-Cas12a based colorimetric biosensor for target HBV detection by utilizing probe DNA regulation of the catalytic behaviors of Mxene-probe DNA-Ag/Pt nanohybrids. In the presence of HBV target, the Cas12a trans-cleavage activity could be efficiently activated to degrade the DNA probes, which led to the inhibition of DNA metallization and enzyme activity enhancer DNA adsorbed on Mxene, resulting in significantly reduced catalytic activity. The Mxene-probe DNA-Ag/Pt nanohybrids exhibited excellent sensitivity and specificity with subpicomolar detection limits, as well as good accuracy and stability for the determination of target HBV DNA in human serum samples. Moreover, this colorimetric sensing strategy could be integrated with the smartphone platform to allow the visible sensitive detection of target DNA. Taken together, the proposed colorimetric method provides a novel approach for HBV DNA diagnosis, especially suitable for the high endemic, developing countries with limited instrumental and medical supports.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    滚环扩增(RCA)是一种等温酶促扩增反应,用于大量产生具有预先设计的序列和功能的周期性长单链DNA/RNA。RCA技术不仅在构建功能性DNA组件方面显示出无与伦比的优势;RCA产品还可以作为高性能支架与外源部分相互作用或容纳外源部分,即,治疗性核酸,蛋白质,脂质,阳离子聚合物,和金属纳米颗粒(NPs),等。制造具有各种尺寸和形态的多功能和生物响应材料。RCA产品也是一种具有强分子间/分子内相互作用的高分子量聚阴离子,这为调节DNA纳米药物和散装材料的缩合状态提供了很好的机会。基于所有这些良好的特性,基于RCA的材料在生物医学领域显示出越来越多的应用潜力。在这次审查中,我们总结了基于RCA的折纸结构的最新发展,NPs,水凝胶,和金属化,制造方法,它们的生物医学应用,并仔细讨论了未来的前景。
    Rolling circle amplification (RCA) is an isothermal enzymatic amplification reaction, which is used to massively produce periodic long-single-stranded DNA/RNA with predesigned sequences and functions. The RCA technique not only shows unparalleled advantages in constructing functional DNA assemblies; and the RCA products can also serve as high-performance scaffolds to interact with or accommodate foreign moieties, i.e., therapeutic nucleic acids, proteins, lipids, cationic polymers, and metal nanoparticles (NPs), etc. to fabricate multifunctional and bioresponsive materials with various sizes and morphologies. The RCA product is also a kind of high-molecular-weight polyanion with strong inter/intra-molecular interactions, which provides great opportunities for regulating the condensation states of DNA nanomedicines and bulk materials. Based on all these good properties, the RCA-based materials have shown more and more practical potentials in biomedical fields. In this review, we summarize the recent development of RCA-based origami structures, NPs, hydrogels, and metallization, for which the fabrication methods, their biomedical applications, and future prospects are carefully discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    已知DNA折纸模板在纳米电子应用的期望位置处整合功能组分表现出许多优点。为了以自下而上的方式固定导电或半导体物种,DNA模板的编程组装是最必要的。该报告展示了银纳米线通过利用生物素-STV的主客体相互作用和聚(dG-dC)DNA纳米线的序列特异性银金属化(以10%的产率)实现了两个线性DNA折纸(DO)纳米结构的桥接使用(dA)10涂覆的AgNP(15nm)。酶法合成750bp,1500bp和3000bp双生物素化聚(dG-dC),1:1生物素-STV和银纳米线桥接DNA模板的合成通过凝胶电泳表征,原子力显微镜成像技术。这里使用的策略提供了一种方法,可以将异质模板精确地连接到实际纳米电子器件的自下而上制造。
    DNA origami templates are known to exhibit many advantages to integrate functional components at desirable locations for nanoelectronic applications. In order to immobilize conducting or semiconducting species in a bottom-up approach, the programmed assembly of DNA templates is of utmost necessity. This report demonstrates the silver nanowires enabled bridging of two linear DNA origami (DO) nanostructures by utilizing the host-guest interaction of biotin-STV and sequence-specific silver metallization of poly(dG-dC) DNA nanowires (in 10 % yield) using (dA)10 coated AgNPs (15 nm). The enzymatic synthesis of 750 bp, 1500 bp and 3000 bp bis-biotinylated poly(dG-dC), facile synthesis of 1 : 1 biotin-STV and silver-nanowire bridged DNA templates were characterized by gel electrophoresis, atomic force microscope imaging techniques. The strategy utilized here provides a method that can precisely connect heterogeneous templates towards bottom-up fabrication of practical nanoelectronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Integrating dissimilar materials at the nanoscale is crucial for modern electronics and optoelectronics. The structural DNA nanotechnology provides a universal platform for precision assembly of materials; nevertheless, heterogeneous integration of dissimilar materials with DNA nanostructures has yet to be explored. We report a DNA origami-encoded strategy for integrating silica-metal heterostructures. Theoretical and experimental studies reveal distinctive mechanisms for the binding and aggregation of silica and metal clusters on protruding double-stranded DNA (dsDNA) strands that are prescribed on the DNA origami template. In particular, the binding energy differences of silica/metal clusters and DNA molecules underlies the accessibilities of dissimilar material areas on DNA origami. By programming the densities and lengths of protruding dsDNA strands on DNA origami, silica and metal materials can be independently deposited at their predefined areas with a high vertical precision of 2 nm. We demonstrate the integration of silica-gold and silica-silver heterostructures with high site addressability. This DNA nanotechnology-based strategy is thus applicable for integrating various types of dissimilar materials, which opens up new routes to bottom-up electronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号