DNA double-strand break repair

DNA 双链断裂修复
  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结直肠癌(CRC)是全球最常见的恶性肿瘤之一。双链断裂(DSB)是最严重的DNA损伤类型。然而,很少有审查彻底审查DSB在CRC中的参与。最新研究表明,DSB修复在CRC中起着重要作用。例如,DSB相关基因如BRCA1、Ku-70和DNA聚合酶θ(POLQ)与CRC的发生有关,POLQ甚至影响CRC的预后和放疗耐药性。这篇综述全面总结了DSB在CRC中的作用,探讨其机制,并讨论与CRC治疗的关联。已经证明了DSB的四种途径。1.非同源末端连接(NHEJ)是主要途径。其核心基因包括Ku70和Ku80结合到断裂的末端并募集修复因子以形成介导DNA断裂连接的复合物。2.同源重组(HR)是另一个重要的途径。其关键基因包括BRCA1和BRCA2参与发现,配对,连接断裂的两端,并确保正常双链DNA结构中断裂的恢复。3.单链退火(SSA)途径,和4。POLθ介导的末端连接(alt-EJ)是备用途径。本文阐述了DSB修复途径在CRC中的作用。这可能有助于开发潜在的新治疗方法,并为CRC治疗提供新的机会,以及基于针对这些DNA修复途径的治疗策略的更多个性化治疗选择。
    Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Hutchinson-GilfordProgeria综合征(HGPS)是一种罕见的遗传病,其特征是加速衰老,患有HGPS的人很少活到十几岁以上。该综合征通常是由LMNA基因中的点突变引起的,该基因编码laminA及其剪接变体laminC,核层的组成部分。引起HGPS的突变会导致截断的产生,层粘连蛋白A的法尼酰化形式,称为“早衰蛋白”。“Progerin在健康个体中也以低水平表达,并且似乎在正常衰老中起作用。HGPS与基因组DNA双链断裂(DSB)的积累和DSB修复性质的改变有关。HGPS中DSB的来源通常归因于复制叉的失速和随后的崩溃,以及错误地将修复因子引入损坏站点。在这项工作中,我们使用了一个涉及永生化人类细胞系的模型系统来研究孕激素诱导的基因组损伤.使用免疫荧光方法可视化标记基因组损伤位点的磷酸化组蛋白H2AX灶,我们报告说,在细胞周期曲线或细胞倍增时间没有任何变化的情况下,经工程改造表达早衰蛋白的细胞显示内源性损伤显著升高。在用羟基脲处理的表达早衰蛋白的细胞中,基因组损伤得到增强和持续。野生型层粘连蛋白A的过表达没有引起与早衰蛋白表达相关的结果。我们的结果表明,由progerin引起的DNA损伤可以独立于复制或细胞增殖的整体变化而发生。
    Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as \"progerin.\" Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    修复因子在DNA双链断裂(DSB)的快速积累对于DSB修复至关重要。已经发现在DSB修复中涉及的若干因素在DSB位点处经历液-液相分离(LLPS)以促进DNA修复。RNF168,一种环型E3泛素连接酶,催化H2A。用于募集DNA修复因子的X泛素化。然而,RNF168是否在DSB位点发生LLPS仍不清楚.这里,我们鉴定了K63连接的聚泛素触发的RNF168缩合,其进一步促进了RNF168介导的DSB修复.辐射后,RNF168在细胞核中形成液状缩合物,而纯化的RNF168蛋白也在体外缩合。含有氨基酸460-550的固有无序区域被鉴定为RNF168缩合的必需结构域。有趣的是,K63连接的聚泛素链显着增强了RNF168的LLPS,和LLPS在很大程度上增强了RNF168介导的H2A。X泛素化,提示正反馈回路促进RNF168的快速积累及其催化活性。功能上,RNF168的LLPS缺陷导致53BP1和BRCA1的募集延迟以及随后的DSB修复受损。一起来看,我们的发现证明了LLPS在RNF168介导的DSB修复中的关键作用.
    Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BRCA1和BRCA2的肿瘤抑制作用归因于三个看似不同的功能-同源重组,复制叉保护,和单链(ss)DNA缺口抑制-它们的相对重要性正在争论中。在这次审查中,我们研究了ssDNA缺口的起源和分辨率,并讨论了在理解BRCA1/2在缺口抑制中的作用方面的最新进展。有大量数据表明,BRCA1/2缺陷细胞中的间隙积累与基因组不稳定性和化学敏感性有关。然而,目前尚不清楚是否存在致病作用,BRCA1/2在间隙抑制中的功能不能明确地与其其他功能分开.因此,我们得出结论,BRCA1和2的三个功能是紧密交织在一起的,而不是相互排斥的。
    The tumour-suppressive roles of BRCA1 and 2 have been attributed to three seemingly distinct functions - homologous recombination, replication fork protection, and single-stranded (ss)DNA gap suppression - and their relative importance is under debate. In this review, we examine the origin and resolution of ssDNA gaps and discuss the recent advances in understanding the role of BRCA1/2 in gap suppression. There are ample data showing that gap accumulation in BRCA1/2-deficient cells is linked to genomic instability and chemosensitivity. However, it remains unclear whether there is a causative role and the function of BRCA1/2 in gap suppression cannot unambiguously be dissected from their other functions. We therefore conclude that the three functions of BRCA1 and 2 are closely intertwined and not mutually exclusive.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    α-突触核蛋白(αSyn)是一种突触前和核蛋白,聚集在重要的神经退行性疾病,如帕金森病(PD),帕金森病痴呆(PDD)和路易体痴呆(LBD)。我们过去的工作表明,在化学治疗剂博来霉素1诱导DNA损伤后,核αSyn可能调节HAP1细胞中DNA双链断裂(DSB)修复的形式。这里,我们报道,在HAP1细胞中使用基于染色体外质粒的修复试验,αSyn的遗传缺失会特异性损害DSB修复的非同源末端连接(NHEJ)途径。重要的是,使用CRISPR/Cas9慢病毒方法在精确的基因组位置诱导单个DSB也显示了αSyn在调节HAP1细胞和原代小鼠皮质神经元培养物中的NHEJ中的重要性。DSB修复的这种调节取决于DNA损伤反应信号激酶DNA-PKcs的活性,因为αSyn功能丧失的作用被DNA-PKcs抑制逆转。在诱导αSyn病理后,在小鼠皮层中使用体内多光子成像,我们发现在Polo样激酶(PLK)抑制后,包涵神经元的纵向细胞存活增加,这与夹杂物中聚集的αSyn量的增加有关。一起,这些发现表明,αSyn在调节转化细胞系和原代皮质神经元中的DSB修复中起着重要的生理作用。这种核功能的丧失可能导致PD中检测到的神经元基因组不稳定,PDD和DLB,并指出DNA-PKcs和PLK是潜在的治疗靶标。
    α-synuclein (αSyn) is a presynaptic and nuclear protein that aggregates in important neurodegenerative diseases such as Parkinson\'s Disease (PD), Parkinson\'s Disease Dementia (PDD) and Lewy Body Dementia (LBD). Our past work suggests that nuclear αSyn may regulate forms of DNA double-strand break (DSB) repair in HAP1 cells after DNA damage induction with the chemotherapeutic agent bleomycin1. Here, we report that genetic deletion of αSyn specifically impairs the non-homologous end-joining (NHEJ) pathway of DSB repair using an extrachromosomal plasmid-based repair assay in HAP1 cells. Importantly, induction of a single DSB at a precise genomic location using a CRISPR/Cas9 lentiviral approach also showed the importance of αSyn in regulating NHEJ in HAP1 cells and primary mouse cortical neuron cultures. This modulation of DSB repair is dependent on the activity of the DNA damage response signaling kinase DNA-PKcs, since the effect of αSyn loss-of-function is reversed by DNA-PKcs inhibition. Using in vivo multiphoton imaging in mouse cortex after induction of αSyn pathology, we find an increase in longitudinal cell survival of inclusion-bearing neurons after Polo-like kinase (PLK) inhibition, which is associated with an increase in the amount of aggregated αSyn within inclusions. Together, these findings suggest that αSyn plays an important physiologic role in regulating DSB repair in both a transformed cell line and in primary cortical neurons. Loss of this nuclear function may contribute to the neuronal genomic instability detected in PD, PDD and DLB and points to DNA-PKcs and PLK as potential therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA聚合酶λ(Polλ)和mu(Polμ)是X家族聚合酶,它们通过非同源末端连接途径(NHEJ)参与DNA双链断裂(DSB)修复。两种聚合酶从一个DSB末端直接合成,使用从第二个DSB端派生的模板。这样,它们促进NHEJ连接步骤并使通常与该途径相关的序列丢失最小化。两种聚合酶的同源底物不同,因为当合成必须从碱基配对的DSB端引发时,Polλ是优选的,而当合成必须从未配对的DSB末端引发时,需要Poly。我们生成了Polλ变体(PolλKGET),该变体在成对的末端保留了规范的Polλ活性,尽管掺入保真度降低了。我们最近发现,该变体出乎意料地从未配对的引物末端获得了以前Poly合成所特有的活性。尽管Loop1区域的侧链与DNA底物没有接触,PolλKGETLoop1氨基酸序列对于其在NHEJ期间的独特活性是令人惊讶的必需的。一起来看,这些结果强调了Loop1区在不同的家族X聚合酶中起着不同的作用。
    DNA polymerases lambda (Polλ) and mu (Polμ) are X-Family polymerases that participate in DNA double-strand break (DSB) repair by the nonhomologous end-joining pathway (NHEJ). Both polymerases direct synthesis from one DSB end, using template derived from a second DSB end. In this way, they promote the NHEJ ligation step and minimize the sequence loss normally associated with this pathway. The two polymerases differ in cognate substrate, as Polλ is preferred when synthesis must be primed from a base-paired DSB end, while Polμ is required when synthesis must be primed from an unpaired DSB end. We generated a Polλ variant (PolλKGET) that retained canonical Polλ activity on a paired end-albeit with reduced incorporation fidelity. We recently discovered that the variant had unexpectedly acquired the activity previously unique to Polμ-synthesis from an unpaired primer terminus. Though the sidechains of the Loop1 region make no contact with the DNA substrate, PolλKGET Loop1 amino acid sequence is surprisingly essential for its unique activity during NHEJ. Taken together, these results underscore that the Loop1 region plays distinct roles in different Family X polymerases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有人认为,致癌作用和物种形成是基于“核型密码”通过“基因组不稳定”阶段的变化的进化事件,其次是选择初始细胞的生存能力和适应性的瓶颈。基因组(即,染色体)不稳定性是由(大量)DNA断裂和随后的DNA双链断裂(DSB)的错误修复引起的,导致各种染色体重排。选择潜在的肿瘤细胞用于快速体细胞增殖。最终产生新物种的细胞不仅需要存活和增殖能力,而且要有一个平衡的基因组,在通过减数分裂作为另一个瓶颈并与相同的配子融合后,可以导致一个适应良好的有机体。这样的新生物应该在遗传上或地理上与祖先种群隔离,并拥有或发展至少部分性屏障。
    It is argued that carcinogenesis and speciation are evolutionary events which are based on changes in the \'karyotypic code\' through a phase of \'genome instability\', followed by a bottleneck of selection for the viability and adaptability of the initial cells. Genomic (i.e., chromosomal) instability is caused by (massive) DNA breakage and the subsequent mis-repair of DNA double-strand breaks (DSBs) resulting in various chromosome rearrangements. Potential tumor cells are selected for rapid somatic proliferation. Cells eventually yielding a novel species need not only to be viable and proliferation proficient, but also to have a balanced genome which, after passing meiosis as another bottleneck and fusing with an identical gamete, can result in a well-adapted organism. Such new organisms should be genetically or geographically isolated from the ancestral population and possess or develop an at least partial sexual barrier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BRCA1和BRCA2基因的失活突变通过同源重组(HR)损害DNA双链断裂(DSB)修复,导致染色体不稳定和癌症。重要的是,BRCA1/2缺乏也会导致治疗上可靶向的漏洞。这里,我们将终末切除因子EXO1的依赖性确定为BRCA1缺陷细胞的关键易损性.EXO1缺陷在S期产生聚(ADP-核糖)修饰的DNA损伤,与BRCA1缺陷型但野生型或BRCA2缺陷型细胞中未解决的DSB和基因组不稳定性相关。我们的数据表明,BRCA1/EXO1双缺陷细胞由于单链退火(SSA)的修复受损而在其HR缺陷之上积累了DSB。相比之下,BRCA2缺陷型细胞在不存在EXO1的情况下保留SSA活性,因此耐受EXO1损失。与对EXO1介导的SSA的依赖性一致,我们发现,与BRCA1高表达肿瘤相比,BRCA1突变肿瘤的EXO1表达升高,SSA相关基因组瘢痕增加.总的来说,我们的发现揭示了EXO1是BRCA1缺陷型肿瘤的一个有前景的治疗靶点.
    Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们以前报道过一种必需的DNA修复酶的活性丧失,多核苷酸激酶3'-磷酸酶(PNKP),导致亨廷顿病(HD)和脊髓小脑共济失调3型(SCA3)患者脑基因组中双链断裂(DSB)的积累。在这里,我们记录了PNKP与磷酸果糖激酶果糖-2,6-双磷酸酶3(PFKFB3)的核同工型相互作用,将果糖-6-磷酸(F6P)转化为果糖-2,6-二磷酸(F2,6BP),一种有效的糖酵解变构调节剂。PFKFB3的消耗明显消除了PNKP活性,从而影响PNKP介导的转录偶联的非同源末端连接(TC-NHEJ)。在HD和SCA3患者大脑的核提取物中,PFKFB3和F2,6BP水平均显着降低。外源性F2,6BP恢复了这些样品的脑核提取物中的PNKP活性。此外,将F2,6BP递送到HD小鼠纹状体来源的神经元细胞中,恢复了PNKP活性,转录的基因组完整性和细胞活力。因此,我们推测F2,6BP在体内充当PNKP的适当功能以及从而脑健康的辅因子。因此,我们的结果为探索F2,6BP和相关化合物用于治疗polyQ疾病的治疗用途提供了令人信服的理由。
    Huntington\'s disease (HD) and spinocerebellar ataxia type 3 (SCA3) are the two most prevalent polyglutamine (polyQ) neurodegenerative diseases, caused by CAG (encoding glutamine) repeat expansion in the coding region of the huntingtin (HTT) and ataxin-3 (ATXN3) proteins, respectively. We have earlier reported that the activity, but not the protein level, of an essential DNA repair enzyme, polynucleotide kinase 3\'-phosphatase (PNKP), is severely abrogated in both HD and SCA3 resulting in accumulation of double-strand breaks in patients\' brain genome. While investigating the mechanistic basis for the loss of PNKP activity and accumulation of DNA double-strand breaks leading to neuronal death, we observed that PNKP interacts with the nuclear isoform of 6-phosphofructo-2-kinase fructose-2,6-bisphosphatase 3 (PFKFB3). Depletion of PFKFB3 markedly abrogates PNKP activity without changing its protein level. Notably, the levels of both PFKFB3 and its product fructose-2,6 bisphosphate (F2,6BP), an allosteric modulator of glycolysis, are significantly lower in the nuclear extracts of post-mortem brain tissues of HD and SCA3 patients. Supplementation of F2,6BP restored PNKP activity in the nuclear extracts of patients\' brain. Moreover, intracellular delivery of F2,6BP restored both the activity of PNKP and the integrity of transcribed genome in neuronal cells derived from striatum of HD mouse. Importantly, supplementing F2,6BP rescued the HD phenotype in Drosophila, suggesting F2,6BP to serve in vivo as a cofactor for the proper functionality of PNKP and thereby, of brain health. Our results thus provide a compelling rationale for exploring the therapeutic use of F2,6BP and structurally related compounds for treating polyQ diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号