DNA assembly

DNA 组装
  • 文章类型: Journal Article
    痕量蛋白质的定量在技术上具有挑战性,因为蛋白质不能像核酸一样直接扩增。为了提高分析灵敏度并补充常规蛋白质分析方法,我们开发了一种高灵敏度和均质的检测策略,称为蛋白质诱导的DNA哑铃扩增(PINDA)。PINDA通过使用由与蛋白质亲和配体缀合的DNA链制成的蛋白质结合探针将蛋白质识别与指数核酸扩增相结合。当一对探针与相同的靶蛋白结合时,使缀合至每个探针的互补核酸序列紧密接近。探针的增加的局部浓度导致核酸的稳定哑铃结构的形成。使用诸如环介导的等温扩增的技术,DNA哑铃易于指数扩增。PINDA测定消除了洗涤或分离步骤的需要,适用于现场应用。检测模型蛋白,凝血酶,线性范围为10fM-100pM,检测限为10fM。PINDA技术已成功应用于乳制品样品的分析,以检测β-乳球蛋白,一种常见的食物过敏原,和肠炎沙门氏菌,一种食源性致病菌。可以通过改变用于结合特定靶标的亲和配体来容易地修改PINDA测定以检测其他靶标。
    Quantification of trace amounts of proteins is technically challenging because proteins cannot be directly amplified like nucleic acids. To improve the analytical sensitivity and to complement conventional protein analysis methods, we developed a highly sensitive and homogeneous detection strategy called Protein-Induced DNA Dumbbell Amplification (PINDA). PINDA combines protein recognition with exponential nucleic acid amplification by using protein binding probes made of DNA strands conjugated to protein affinity ligands. When a pair of probes bind to the same target protein, complementary nucleic acid sequences that are conjugated to each probe are brought into close proximity. The increased local concentration of the probes results in the formation of a stable dumbbell structure of the nucleic acids. The DNA dumbbell is readily amplifiable exponentially using techniques such as loop-mediated isothermal amplification. The PINDA assay eliminates the need for washing or separation steps, and is suitable for on-site applications. Detection of the model protein, thrombin, has a linear range of 10 fM-100 pM and detection limit of 10 fM. The PINDA technique is successfully applied to the analysis of dairy samples for the detection of β-lactoglobulin, a common food allergen, and Salmonella enteritidis, a foodborne pathogenic bacterium. The PINDA assay can be easily modified to detect other targets by changing the affinity ligands used to bind to the specific targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA数据存储已经成为通过利用核酸作为数字信息介质来存储大量数据的解决方案。DNA提供了非常高的存储密度,持久耐用,与闪存和硬盘驱动器等传统存储介质相比,维护成本低。DNA数据存储包括以下步骤:编码、DNA合成(即,Writing),保存,检索,DNA测序(即,阅读),和解码。在这些步骤中,由于偶联效率不完美,DNA合成存在瓶颈,低吞吐量,和过度使用有机溶剂。克服这些挑战对于将DNA确立为可行的数据存储介质至关重要。在这次审查中,我们提供DNA数据存储的整个过程,介绍每个步骤的最新进展。接下来,我们研究了DNA合成方法的详细概述,重点是它们的局限性。最后,我们讨论了克服每种方法的局限性及其前景的努力。
    DNA data storage has emerged as a solution for storing massive volumes of data by utilizing nucleic acids as a digital information medium. DNA offers exceptionally high storage density, long durability, and low maintenance costs compared to conventional storage media such as flash memory and hard disk drives. DNA data storage consists of the following steps: encoding, DNA synthesis (i.e., writing), preservation, retrieval, DNA sequencing (i.e., reading), and decoding. Out of these steps, DNA synthesis presents a bottleneck due to imperfect coupling efficiency, low throughput, and excessive use of organic solvents. Overcoming these challenges is essential to establish DNA as a viable data storage medium. In this review, we provide the overall process of DNA data storage, presenting the recent progress of each step. Next, we examine a detailed overview of DNA synthesis methods with an emphasis on their limitations. Lastly, we discuss the efforts to overcome the constraints of each method and their prospects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过使用CRISPR技术进行有效的基因组编辑需要将多种遗传编码的组分同时有效地递送到哺乳动物细胞。在所有编辑方法中,素编辑(PE)具有执行无缝基因组重写的独特潜力,在没有DNA双链断裂(DSB)的情况下。有效的PE递送至哺乳动物细胞所需的货物容量与传统病毒递送载体的有限包装容量不同。相比之下,杆状病毒(BV)具有很大的合成DNA容量,可以有效地转导哺乳动物细胞。在这里,我们描述了用于哺乳动物细胞中多重引物编辑的杆状病毒载体组装方案。
    Efficient genome editing by using CRISPR technologies requires simultaneous and efficient delivery of multiple genetically encoded components to mammalian cells. Amongst all editing approaches, prime editing (PE) has the unique potential to perform seamless genome rewriting, in the absence of DNA double-strand breaks (DSBs). The cargo capacity required for efficient PE delivery to mammalian cells stands at odd with the limited packaging capacity of traditional viral delivery vectors. By contrast, baculovirus (BV) has a large synthetic DNA capacity and can efficiently transduce mammalian cells. Here we describe a protocol for the assembly of baculovirus vectors for multiplexed prime editing in mammalian cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分子克隆促进异源DNA片段与载体的组装,导致产生可以在宿主细胞中稳定复制的质粒。为了有效准确地筛选出预期的质粒候选物,各种方法,比如蓝白色屏幕,已经被开发用于可视化。然而,这些方法通常需要额外的遗传操作和成本。为了简化可视化分子克隆的过程,在这里我们报道彩虹筛查,一种将吉布森组装与色蛋白结合起来区分大肠杆菌的方法(E.大肠杆菌)肉眼可见的菌落,消除了额外的遗传操作或成本的需要。为了说明设计,我们选择大肠杆菌16srRNA和sfGFP表达模块作为两个插入片段。使用彩虹筛选,假阳性菌落可以在LB琼脂平板上容易地区分。此外,组装效率和构造精度均可超过80%。我们预计彩虹筛选将丰富分子克隆方法,并扩展色蛋白在生物技术和合成生物学中的应用。
    Molecular cloning facilitates the assembly of heterologous DNA fragments with vectors, resulting in the generation of plasmids that can steadily replicate in host cells. To efficiently and accurately screen out the expected plasmid candidates, various methods, such as blue-white screening, have been developed for visualization. However, these methods typically require additional genetic manipulations and costs. To simplify the process of visualized molecular cloning, here we report Rainbow Screening, a method that combines Gibson Assembly with chromoproteins to distinguish Escherichia coli (E. coli) colonies by naked eyes, eliminating the need for additional genetic manipulations or costs. To illustrate the design, we select both E. coli 16s rRNA and sfGFP expression module as two inserted fragments. Using Rainbow Screening, false positive colonies can be easily distinguished on LB-agar plates. Moreover, both the assembly efficiency and the construct accuracy can exceed 80%. We anticipate that Rainbow Screening will enrich the molecular cloning methodology and expand the application of chromoproteins in biotechnology and synthetic biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在没有DNA模板的情况下,预定义序列的长双链DNA分子的从头算产生尤其具有挑战性。DNA合成步骤仍然是许多应用的瓶颈,例如祖先基因功能评估,分析选择性剪接或基于DNA的数据存储。在本报告中,我们提出了一种完全体外的方案,以使用GoldenGate组装在不到3天的时间内从市售的短DNA块开始产生非常长的双链DNA分子。这种创新的应用使我们能够简化生产24kb长的DNA分子的过程,该分子存储了1789年《人权宣言》和《公民权利宣言》的一部分。产生的DNA分子可以容易地克隆到合适的宿主/载体系统中用于扩增和选择。
    In the absence of a DNA template, the ab initio production of long double-stranded DNA molecules of predefined sequences is particularly challenging. The DNA synthesis step remains a bottleneck for many applications such as functional assessment of ancestral genes, analysis of alternative splicing or DNA-based data storage. In this report we propose a fully in vitro protocol to generate very long double-stranded DNA molecules starting from commercially available short DNA blocks in less than 3 days using Golden Gate assembly. This innovative application allowed us to streamline the process to produce a 24 kb-long DNA molecule storing part of the Declaration of the Rights of Man and of the Citizen of 1789 . The DNA molecule produced can be readily cloned into a suitable host/vector system for amplification and selection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合成生物学,一个新兴而迅速发展的跨学科领域,已证明在生物医学的广泛领域中具有越来越大的应用潜力,生物燃料,和新颖的材料。DNA组装是合成生物学的关键技术,也是实现全合成人工生命的中心点。虽然小DNA片段的组装已成功商业化,大的DNA片段的组装仍然是一个挑战,因为它们的高分子量和易断裂。本文概述了DNA组装技术的发展和现状,关注大肠杆菌中大型DNA片段组装的最新进展,枯草芽孢杆菌,和酿酒酵母.特别是,强调了与在不同宿主中组装大DNA片段相关的方法和挑战。DNA组装的进步有可能促进定制基因组的构建,让我们有能力改变细胞功能,甚至创造人造生命。它也有助于我们理解,预测,操纵生物体。
    Synthetic biology, a newly and rapidly developing interdisciplinary field, has demonstrated increasing potential for extensive applications in the wide areas of biomedicine, biofuels, and novel materials. DNA assembly is a key enabling technology of synthetic biology and a central point for realizing fully synthetic artificial life. While the assembly of small DNA fragments has been successfully commercialized, the assembly of large DNA fragments remains a challenge due to their high molecular weight and susceptibility to breakage. This article provides an overview of the development and current state of DNA assembly technology, with a focus on recent advancements in the assembly of large DNA fragments in Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. In particular, the methods and challenges associated with the assembly of large DNA fragment in different hosts are highlighted. The advancements in DNA assembly have the potential to facilitate the construction of customized genomes, giving us the ability to modify cellular functions and even create artificial life. It is also contributing to our ability to understand, predict, and manipulate living organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    简单高效的DNA组装方法已广泛应用于合成生物学中。这里,我们为最近开发的PEDA(噬菌体酶辅助体内DNA组装)方法提供了协议,用于在多种微生物中直接体内组装单个DNA部分,如大肠杆菌,Ralstoniaeutropha,恶臭假单胞菌,植物乳杆菌,和Yarrowialipolytica。PEDA允许在体内组装具有短至5bp的同源序列的DNA片段,效率与目前的体外DNA组装相当,这将广泛推动合成生物学的快速发展。
    Simple and efficient DNA assembly methods have been widely used in synthetic biology. Here, we provide the protocol for the recently developed PEDA (phage enzyme-assisted in vivo DNA assembly) method for direct in vivo assembly of individual DNA parts in multiple microorganisms, such as Escherichia coli, Ralstonia eutropha, Pseudomonas putida, Lactobacillus plantarum, and Yarrowia lipolytica. PEDA allows in vivo assembly of DNA fragments with homologous sequences as short as 5 bp, and the efficiency is comparable to the prevailing in vitro DNA assembly, which will broadly boost the rapid progress of synthetic biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    实验室自动化与机器人辅助过程增强合成生物学,但其对项目的经济影响尚不确定。我们提出了一个实验价格指数(EPI),用于定量比较因素的时间,成本,和样本编号,帮助测量合成生物学和生物分子工程中实验室自动化的效率。
    Laboratory automation with robot-assisted processes enhances synthetic biology, but its economic impact on projects is uncertain. We have proposed an experiment price index (EPI) for a quantitative comparison of factors in time, cost, and sample numbers, helping measure the efficiency of laboratory automation in synthetic biology and biomolecular engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物制品是专门设计的自动化高通量设施,建筑,和测试工程/合成DNA构建体(质粒),通常来自遗传部分。该过程的关键步骤是评估组装的DNA构建体对所需设计的保真度。目前用于此目的的方法是限制性消化或PCR,然后进行片段分析和测序。爱丁堡基因组铸造厂(EGF)最近使用牛津纳米孔测序技术建立了单分子测序质量控制步骤,伴随Nextflow管道和Python包,进行深入分析并生成详细报告。我们的软件使研究人员能够处理质粒,包括生物铸造科学家,快速分析和解释测序数据。总之,我们创建了一个实验室和软件协议来验证组装,克隆,或编辑的质粒,使用纳米孔长读数,它可以作为遗传学的有用资源,合成生物学,和排序社区。
    Biofoundries are automated high-throughput facilities specializing in the design, construction, and testing of engineered/synthetic DNA constructs (plasmids), often from genetic parts. A critical step of this process is assessing the fidelity of the assembled DNA construct to the desired design. Current methods utilized for this purpose are restriction digest or PCR followed by fragment analysis and sequencing. The Edinburgh Genome Foundry (EGF) has recently established a single-molecule sequencing quality control step using the Oxford Nanopore sequencing technology, along with a companion Nextflow pipeline and a Python package, to perform in-depth analysis and generate a detailed report. Our software enables researchers working with plasmids, including biofoundry scientists, to rapidly analyze and interpret sequencing data. In conclusion, we have created a laboratory and software protocol that validates assembled, cloned, or edited plasmids, using Nanopore long-reads, which can serve as a useful resource for the genetics, synthetic biology, and sequencing communities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    链霉菌具有生产新型天然产物(NPs)的巨大潜力,因为它拥有大量未表征和沉默的天然产物生物合成基因簇(BGC)。然而,缺乏有效的基因簇工程策略阻碍了新药发现的步伐。这里,我们开发了一个易于使用的,用于基因簇工程的高度灵活的DNA组装工具包。DNA组装工具包与各种DNA组装方法兼容,包括Biobrick,金门,CATCH,基于酵母同源重组的DNA组装和归巢核酸内切酶介导的组装。这种兼容性在处理多个遗传部分或重构大基因簇方面提供了很大的灵活性。为了演示此工具包的实用性,我们量化了模块化监管部件库,并使用表征的启动子改造基因簇(act),从而导致产量增加。总的来说,这项工作提供了一个强大的零件装配工具包,可用于链霉菌中的天然产品发现和优化。
    Streptomyces has enormous potential to produce novel natural products (NPs) as it harbors a huge reservoir of uncharacterized and silent natural product biosynthetic gene clusters (BGCs). However, the lack of efficient gene cluster engineering strategies has hampered the pace of new drug discovery. Here, we developed an easy-to-use, highly flexible DNA assembly toolkit for gene cluster engineering. The DNA assembly toolkit is compatible with various DNA assembling approaches including Biobrick, Golden Gate, CATCH, yeast homologous recombination-based DNA assembly and homing endonuclease-mediated assembly. This compatibility offers great flexibility in handling multiple genetic parts or refactoring large gene clusters. To demonstrate the utility of this toolkit, we quantified a library of modular regulatory parts, and engineered a gene cluster (act) using characterized promoters that led to increased production. Overall, this work provides a powerful part assembly toolkit that can be used for natural product discovery and optimization in Streptomyces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号