DNA Polymerase III

DNA 聚合酶 III
  • 文章类型: Journal Article
    在滞后链染色质复制过程中,多个冈崎片段(OF)需要加工和核小体组装,但连接这些过程的机制仍不清楚.这里,使用透射电子显微镜和DNA连接酶Cdc9的快速降解,我们观察到在滞后链上积累的皮瓣结构,受Polδ的链置换活性和Fen1的核酸酶消化控制。相邻襟翼结构之间的距离表现出规则的模式,指示成熟的长度。虽然fen1Δ或通过聚合酶δ(Polδ;pol3exec-)增强的链置换活性对皮瓣间距离的影响最小,影响复制偶联核小体装配的突变体,如cac1Δ和mcm2-3A,显著改变它。DNAPolδ亚基Pol32的缺失,显著增加了这个距离。机械上,Pol32与组蛋白H3-H4结合,对于滞后链上的核小体组装至关重要。一起,我们认为Pol32在核小体组装和滞后链上OF的加工之间建立了联系。
    During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ\'s strand displacement activity and Fen1\'s nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物体的基因组DNA必须在每个细胞周期中准确复制。DNA合成由DNA聚合酶催化,在5'到3'方向延伸核苷酸聚合物。这种固有的方向性需要向前合成一条链(前导),而另一个是不连续地(滞后)向后合成的,以将合成与双链DNA的展开耦合。真核细胞拥有许多不同的聚合酶,协调复制DNA,三种主要的复制聚合酶是Polα,Polδ和Polε。在酵母和人类细胞中进行的研究利用将分子特征整合到新生DNA中的突变聚合酶,暗示Polε在前导链合成中,而Polα和Polδ在滞后链复制中。最近的结构见解揭示了这些酶在核心解旋酶周围的空间组织如何促进它们的链特异性作用。然而,复制过程中的各种挑战性情况需要这些酶的使用灵活性,例如在复制启动或遇到复制阻断加合物期间。这篇综述总结了复制聚合酶在批量DNA复制中的作用,并探讨了它们在完成基因组复制方面的灵活和动态部署。我们还研究了聚合酶使用模式如何通过揭示复制叉的方向性来识别复制起始和终止区域,从而为我们对全局复制动态的理解提供信息。
    An organism\'s genomic DNA must be accurately duplicated during each cell cycle. DNA synthesis is catalysed by DNA polymerase enzymes, which extend nucleotide polymers in a 5\' to 3\' direction. This inherent directionality necessitates that one strand is synthesised forwards (leading), while the other is synthesised backwards discontinuously (lagging) to couple synthesis to the unwinding of duplex DNA. Eukaryotic cells possess many diverse polymerases that coordinate to replicate DNA, with the three main replicative polymerases being Pol α, Pol δ and Pol ε. Studies conducted in yeasts and human cells utilising mutant polymerases that incorporate molecular signatures into nascent DNA implicate Pol ε in leading strand synthesis and Pol α and Pol δ in lagging strand replication. Recent structural insights have revealed how the spatial organization of these enzymes around the core helicase facilitates their strand-specific roles. However, various challenging situations during replication require flexibility in the usage of these enzymes, such as during replication initiation or encounters with replication-blocking adducts. This review summarises the roles of the replicative polymerases in bulk DNA replication and explores their flexible and dynamic deployment to complete genome replication. We also examine how polymerase usage patterns can inform our understanding of global replication dynamics by revealing replication fork directionality to identify regions of replication initiation and termination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真核DNA复制和修复的酶和调节蛋白的协调很大程度上是通过增殖细胞核抗原(PCNA)实现的。一种包含DNA双链体的环形同源三聚体蛋白。许多蛋白质通过称为PCNA相互作用蛋白基序(PIP)的保守序列结合PCNA。PCNA进一步受到不同翻译后修饰的调控。残基Y211处的磷酸化促进解锁停滞的复制叉以绕过DNA损伤修复过程,但增加核苷酸错误掺入。我们在这里探索Y211的磷酸化如何影响调节蛋白p21和p15的规范PIP序列的PCNA识别,它们以nM和μM亲和力结合,分别。为此,PCNA与对羧甲基-L-苯丙氨酸(pCMF),制备了211位磷酸化酪氨酸的模拟物。我们还表征了PCNA与DNA聚合酶δ(p125)催化亚基的非规范PIP序列的结合,以及去泛素化PCNA的泛素特异性肽酶29(USP29)的经典PIP序列。我们的结果表明,Tyr211磷酸化对p21和p15的分子识别几乎没有影响,并且p125和USP29的PIP序列与其他PIP序列结合到PCNA上的相同位点,但亲和力非常低。
    The coordination of enzymes and regulatory proteins for eukaryotic DNA replication and repair is largely achieved by Proliferating Cell Nuclear Antigen (PCNA), a toroidal homotrimeric protein that embraces the DNA duplex. Many proteins bind PCNA through a conserved sequence known as the PCNA interacting protein motif (PIP). PCNA is further regulated by different post-translational modifications. Phosphorylation at residue Y211 facilitates unlocking stalled replication forks to bypass DNA damage repair processes but increasing nucleotide misincorporation. We explore here how phosphorylation at Y211 affects PCNA recognition of the canonical PIP sequences of the regulatory proteins p21 and p15, which bind with nM and μM affinity, respectively. For that purpose, we have prepared PCNA with p-carboxymethyl-L-phenylalanine (pCMF, a mimetic of phosphorylated tyrosine) at position 211. We have also characterized PCNA binding to the non-canonical PIP sequence of the catalytic subunit of DNA polymerase δ (p125), and to the canonical PIP sequence of the enzyme ubiquitin specific peptidase 29 (USP29) which deubiquitinates PCNA. Our results show that Tyr211 phosphorylation has little effect on the molecular recognition of p21 and p15, and that the PIP sequences of p125 and USP29 bind to the same site on PCNA as other PIP sequences, but with very low affinity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA聚合酶δ(polδ)全酶,由polδ和渐进滑动夹具组成,PCNA,在滞后的链复制过程中进行DNA合成,前导链复制的启动,以及主要的DNA损伤修复和耐受途径。Polδ全酶在引物/模板(P/T)连接处组装,并在涉及主要单链DNA(ssDNA)结合蛋白复合物的逐步过程中启动DNA合成,RPA,可加工性滑动夹具装载机,RFC,PCNA和polδ。在这个过程中,RPA的相互作用,具有P/T结的RFC和polδ均显着重叠。尚未解决的一个紧迫问题是如何在此过程中适应这些重叠的交互。为了解决这个问题,我们设计和利用新颖,集成FRET测定,连续监测RPA的相互作用,RFC,以DNA为polδ全酶的PCNA和polδ被组装并启动DNA合成。本研究的结果表明,RPA在整个过程中保持与P/T连接的结合,并且RPA•DNA复合物动态重组以允许RFC和polδ的连续结合。这些结果具有广泛的含义,因为它们突出并区分了RPA依赖性DNA代谢过程中动态RPA•DNA相互作用的功能后果。
    DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, PCNA, carry out DNA synthesis during lagging strand replication, initiation of leading strand replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process involving the major single strand DNA (ssDNA)-binding protein complex, RPA, the processivity sliding clamp loader, RFC, PCNA and pol δ. During this process, the interactions of RPA, RFC and pol δ with a P/T junction all significantly overlap. A burning issue that has yet to be resolved is how these overlapping interactions are accommodated during this process. To address this, we design and utilize novel, ensemble FRET assays that continuously monitor the interactions of RPA, RFC, PCNA and pol δ with DNA as pol δ holoenzymes are assembled and initiate DNA synthesis. Results from the present study reveal that RPA remains engaged with P/T junctions throughout this process and the RPA•DNA complexes dynamically re-organize to allow successive binding of RFC and pol δ. These results have broad implications as they highlight and distinguish the functional consequences of dynamic RPA•DNA interactions in RPA-dependent DNA metabolic processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表观遗传信息的遗传对于维持细胞身份至关重要。亲本组蛋白H3-H4四聚体的转移,组蛋白表观遗传修饰的主要载体,代表了表观遗传信息遗传中至关重要但鲜为人知的一步。这里,我们展示了滞后链DNA聚合酶,Polδ,与H3-H4直接相互作用,并且Polδ和滑动钳PCNA之间的相互作用调节亲本组蛋白向滞后链的转移,很可能与它们在DNA合成中的作用无关。当组合时,Polδ和Mcm2的突变会损害亲本组蛋白的转移,从而导致新生染色质的核小体占有率比单独的突变减少更大。最后,PCNA有助于核小体在新生染色质上的定位。根据这些结果,我们建议PCNA-Polδ复合物将滞后链DNA合成与亲本H3-H4转移偶联,促进表观遗传。
    Inheritance of epigenetic information is critical for maintaining cell identity. The transfer of parental histone H3-H4 tetramers, the primary carrier of epigenetic modifications on histone proteins, represents a crucial yet poorly understood step in the inheritance of epigenetic information. Here, we show the lagging strand DNA polymerase, Pol δ, interacts directly with H3-H4 and that the interaction between Pol δ and the sliding clamp PCNA regulates parental histone transfer to lagging strands, most likely independent of their roles in DNA synthesis. When combined, mutations at Pol δ and Mcm2 that compromise parental histone transfer result in a greater reduction in nucleosome occupancy at nascent chromatin than mutations in either alone. Last, PCNA contributes to nucleosome positioning on nascent chromatin. On the basis of these results, we suggest that the PCNA-Pol δ complex couples lagging strand DNA synthesis to parental H3-H4 transfer, facilitating epigenetic inheritance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA复制是由多蛋白复制复合物进行的紧密协调事件。细菌复制复合物的一个重要因素是环状DNA滑动钳,β-钳夹,通过将聚合酶和DNA修复蛋白与DNA连接来确保DNA的持续复制和DNA修复。β-钳夹是具有多个相互作用配偶体的hub蛋白,它们都通过保守的钳夹结合序列基序结合。由于其作为DNA支架蛋白的核心作用,β-钳夹是抗菌药物的一个有趣的靶标,然而,在理解β-钳夹的功能相互作用方面几乎没有什么努力。在这次审查中,我们仔细检查了β-钳的结构和动力学,检查它与大量结合伴侣的相互作用是如何通过短线性结合基序调节的,并讨论上下文如何影响选择。我们描述了钳夹加载到DNA上的动态过程,并涵盖了靶向β-钳夹的药物开发的最新进展。尽管对β-钳进行了数十年的研究和最近具有里程碑意义的结构见解,仍有许多未公开的促进对这种非常重要的蛋白质的关注。
    DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, β-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. β -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, β-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of β-clamp. In this review, we scrutinize the β-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting β-clamp. Despite decades of research in β-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:POLE和POLD1校对缺陷(POLE/D1pd)定义了一种罕见的超突变转移性结直肠癌(mCRC;超过100mut/Mb)亚型。缺乏关于POLE/D1pdmCRC中免疫检查点抑制剂(ICIs)的活性和功效的疾病特异性数据,并且未知结果是否可能与用ICIs治疗的错配修复缺陷(dMMR)/微卫星不稳定性高(MSI-H)mCRC不同。
    方法:在这项全球研究中,我们收集了27例mCRC患者,这些患者携带POLE/D1突变导致校对缺陷,并单独接受抗程序性细胞死亡配体1+/-抗细胞毒性T淋巴细胞抗原4药物治疗.我们收集了临床病理和基因组特征,回应,和POLE/D1pdmCRCICIs后的生存结局,并将其与接受ICIs治疗的610dMMR/MSI-HmCRC患者队列进行比较。在7241个CRC的独立队列中进行了进一步的基因组分析,以定义POLE和POLD1pd分子谱和突变特征。
    结果:POLE/D1pd与年龄较小有关,男性,较少的RAS/BRAF驱动突变,和占主导地位的右侧结肠癌。与dMMR/MSI-HmCRC相比,POLE/D1pdmCRC患者的总体缓解率(ORR)明显更高(89%对54%;P=0.01)。中位随访24.9个月(四分位距:11.3-43.0个月)后,POLE/D1pd患者的无进展生存期(PFS)显著优于dMMR/MSI-HmCRC[风险比(HR)=0.24,95%置信区间(CI)0.08-0.74,P=0.01],且总生存期(OS)(HR=0.38,95%CI0.12-1.18,P=0.09).在包括DNA修复缺陷类型在内的多变量分析中,POLE/D1pd与显著改善PFS(HR=0.17,95%CI0.04-0.69,P=0.013)和OS(HR=0.24,95%CI0.06-0.98,P=0.047)相关。分子谱分析显示POLE/D1pd肿瘤具有较高的肿瘤突变负荷(TMB)。在两种亚型中均观察到反应,并与POLE/D1pd特征的强度相关。
    结论:与dMMR/MSI-HmCRC相比,POLE/D1pdmCRC患者在肿瘤反应和生存率方面表现出更有利的结果。
    BACKGROUND: POLE and POLD1 proofreading deficiency (POLE/D1pd) define a rare subtype of ultramutated metastatic colorectal cancer (mCRC; over 100 mut/Mb). Disease-specific data about the activity and efficacy of immune checkpoint inhibitors (ICIs) in POLE/D1pd mCRC are lacking and it is unknown whether outcomes may be different from mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRCs treated with ICIs.
    METHODS: In this global study, we collected 27 patients with mCRC harboring POLE/D1 mutations leading to proofreading deficiency and treated with anti-programmed cell death-ligand 1 alone +/- anti-cytotoxic T-lymphocyte antigen-4 agents. We collected clinicopathological and genomic characteristics, response, and survival outcomes after ICIs of POLE/D1pd mCRC and compared them with a cohort of 610 dMMR/MSI-H mCRC patients treated with ICIs. Further genomic analyses were carried out in an independent cohort of 7241 CRCs to define POLE and POLD1pd molecular profiles and mutational signatures.
    RESULTS: POLE/D1pd was associated with younger age, male sex, fewer RAS/BRAF driver mutations, and predominance of right-sided colon cancers. Patients with POLE/D1pd mCRC showed a significantly higher overall response rate (ORR) compared to dMMR/MSI-H mCRC (89% versus 54%; P = 0.01). After a median follow-up of 24.9 months (interquartile range: 11.3-43.0 months), patients with POLE/D1pd showed a significantly superior progression-free survival (PFS) compared to dMMR/MSI-H mCRC [hazard ratio (HR) = 0.24, 95% confidence interval (CI) 0.08-0.74, P = 0.01] and superior overall survival (OS) (HR = 0.38, 95% CI 0.12-1.18, P = 0.09). In multivariable analyses including the type of DNA repair defect, POLE/D1pd was associated with significantly improved PFS (HR = 0.17, 95% CI 0.04-0.69, P = 0.013) and OS (HR = 0.24, 95% CI 0.06-0.98, P = 0.047). Molecular profiling showed that POLE/D1pd tumors have higher tumor mutational burden (TMB). Responses were observed in both subtypes and were associated with the intensity of POLE/D1pd signature.
    CONCLUSIONS: Patients with POLE/D1pd mCRC showed more favorable outcomes compared to dMMR/MSI-H mCRC to treatment with ICIs in terms of tumor response and survival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    染色质复制与亲本组蛋白再循环到新复制的DNA链错综复杂地交织在一起,以实现忠实的遗传和表观遗传。亲本组蛋白的转移通过两种不同的途径发生:前导链沉积,由DNA聚合酶ε亚基Dpb3/Dpb4和滞后链沉积介导,由MCM解旋酶亚基Mcm2促进。然而,Mcm2在沿着前导链移动的同时将亲本组蛋白转移到滞后链的促进机制尚不清楚。这里,我们证明了Pol32的缺失,Pol32是主要的滞后链DNA聚合酶δ的非必需亚基,导致亲本组蛋白H3-H4在复制过程中主要转移到前导链。生化分析进一步证明Pol32可以在体内和体外结合组蛋白H3-H4。Pol32与亲本组蛋白H3-H4的相互作用通过Mcm2内的组蛋白H3-H4结合结构域的突变而被破坏。我们的发现将DNA聚合酶δ亚基Pol32鉴定为Mcm2下游的关键组蛋白伴侣,介导了亲本组蛋白在DNA复制过程中向滞后链的转移。
    Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    端粒的选择性延长(ALT)是由断裂诱导的复制介导的端粒维持机制,在大约15%的人类癌症中很明显。ALT癌症的一个特征是C环的存在,由富C序列组成的环状单链端粒DNA。尽管染色体外富含C的单链DNA(ssDNA),包括C圈,是独特的ALT细胞,他们的生成过程仍然未定义。这里,我们介绍了一种检测单链端粒DNA的方法,称为4SET(单链染色体外端粒的链特异性Southern印迹)测定。利用4SET,我们能够捕获大小接近200到1500个核苷酸的富含C的单链DNA。在细胞质和核质的部分中,线性富含C的ssDNA和C环都很丰富,这支持同时生成线性和圆形富CssDNA的想法。我们还发现,富含C的ssDNA起源于滞后链DNA合成过程中的冈崎片段加工过程。富含C的ssDNA的产生需要CST-PP(CTC1/STN1/TEN1-PRIMASE-聚合酶α)复合物介导的C链DNA合成引发,以及随后由DNA介导的富含C链的过度链置换聚合酶δ和BLM解旋酶。我们的工作提出了在ALT介导的端粒延伸过程中产生富含C的ssDNA和C环的模型。
    Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号