DNA End-Joining Repair

DNA 末端连接修复
  • 文章类型: Journal Article
    在链间交联(ICL)的修复期间,产生DNA双链断裂(DSB)。范可尼贫血(FA)核心复合物,被招募到ICL,通过同源重组(HR)促进该DSB的高保真修复。然而,FA核心复合体是否也促进了独立于ICL的DSB的HR,例如由电离辐射或核酸酶诱导,仍然有争议。这里,在基于CRISPR/Cas9的筛选中,我们将FA核心复合物成员FANCL和Ube2T确定为HR促进因子.使用等基因细胞系模型,我们进一步证明了FANCL和Ube2T的HR促进功能,和它们的泛素化底物FANCD2。我们证明了FANCL和Ube2T以依赖于FANCM的方式定位在DSB,并且是FANCD2的DSB积累所必需的。机械上,我们证明FANCL泛素连接酶活性是CtIP在DSB的积累所必需的,从而促进末端切除和Rad51加载。一起,这些数据表明FA核心复合物和FANCD2在促进ICL和DSB修复中具有双重基因组维持功能.
    During the repair of interstrand crosslinks (ICLs) a DNA double-strand break (DSB) is generated. The Fanconi anemia (FA) core complex, which is recruited to ICLs, promotes high-fidelity repair of this DSB by homologous recombination (HR). However, whether the FA core complex also promotes HR at ICL-independent DSBs, for example induced by ionizing irradiation or nucleases, remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen. Using isogenic cell line models, we further demonstrated an HR-promoting function of FANCL and Ube2T, and of their ubiquitination substrate FANCD2. We show that FANCL and Ube2T localize at DSBs in a FANCM-dependent manner, and are required for the DSB accumulation of FANCD2. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of CtIP at DSBs, thereby promoting end resection and Rad51 loading. Together, these data demonstrate a dual genome maintenance function of the FA core complex and FANCD2 in promoting repair of both ICLs and DSBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对放射疗法的抗性是癌症治疗期间的主要障碍。这里使用基因组规模的CRISPR/Cas9筛选,我们鉴定了CD274基因,编码PD-L1,赋予肺癌细胞对电离辐射(IR)的抗性。内源性PD-L1的耗尽会延迟IR诱导的DNA双链断裂(DSB)的修复,而PD-L1的丢失会下调非同源末端连接(NHEJ),而PD-L1的过表达会上调NHEJ。IR诱导PD-L1在N219和CMTM6处依赖PD-L1的去糖基化从膜到核的易位,并导致PD-L1募集到DSB病灶。PD-L1与细胞核中的Ku相互作用并增强Ku与DSBDNA的结合。PD-L1的IgC结构域与Ku的核心结构域之间的相互作用是PD-L1加速NHEJ介导的DSB修复并产生放射抗性所必需的。因此,PD-L1,除了其免疫抑制活性,在癌症中充当NHEJ介导的DSB修复的机械驱动因素。
    Resistance to radiotherapy is a major barrier during cancer treatment. Here using genome-scale CRISPR/Cas9 screening, we identify CD274 gene, which encodes PD-L1, to confer lung cancer cell resistance to ionizing radiation (IR). Depletion of endogenous PD-L1 delays the repair of IR-induced DNA double-strand breaks (DSBs) and PD-L1 loss downregulates non-homologous end joining (NHEJ) while overexpression of PD-L1 upregulates NHEJ. IR induces translocation of PD-L1 from the membrane into nucleus dependent on deglycosylation of PD-L1 at N219 and CMTM6 and leads to PD-L1 recruitment to DSBs foci. PD-L1 interacts with Ku in the nucleus and enhances Ku binding to DSB DNA. The interaction between the IgC domain of PD-L1 and the core domain of Ku is required for PD-L1 to accelerate NHEJ-mediated DSB repair and produce radioresistance. Thus, PD-L1, in addition to its immune inhibitory activity, acts as mechanistic driver for NHEJ-mediated DSB repair in cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管小分子和重组蛋白具有增强同源定向修复(HDR)效率的潜力,单链DNA(ssDNA)供体,按照目前的设计和化学修饰,对于精确的基因编辑来说仍然是次优的。这里,我们筛选了DNA修复相关蛋白的偏向ssDNA结合序列,并将RAD51优选序列设计为ssDNA供体的HDR增强模块。具有这些模块的供体对RAD51表现出增强的亲和力,从而当与Cas9、nCas9和Cas12a合作时,增强各种基因组基因座和细胞类型的HDR效率。通过与非同源末端连接(NHEJ)或HDRobust策略的抑制剂组合,这些模块化ssDNA供体可实现高达90.03%(中位数74.81%)的HDR效率。靶向内源性蛋白质的HDR增强模块能够实现无化学修饰的策略,以提高ssDNA供体对精确基因编辑的功效。
    Despite the potential of small molecules and recombinant proteins to enhance the efficiency of homology-directed repair (HDR), single-stranded DNA (ssDNA) donors, as currently designed and chemically modified, remain suboptimal for precise gene editing. Here, we screen the biased ssDNA binding sequences of DNA repair-related proteins and engineer RAD51-preferred sequences into HDR-boosting modules for ssDNA donors. Donors with these modules exhibit an augmented affinity for RAD51, thereby enhancing HDR efficiency across various genomic loci and cell types when cooperated with Cas9, nCas9, and Cas12a. By combining with an inhibitor of non-homologous end joining (NHEJ) or the HDRobust strategy, these modular ssDNA donors achieve up to 90.03% (median 74.81%) HDR efficiency. The HDR-boosting modules targeting an endogenous protein enable a chemical modification-free strategy to improve the efficacy of ssDNA donors for precise gene editing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    泛素化是电离辐射(IR)诱导的DNA双链断裂(DSB)的正确修复所需的关键翻译后修饰。当存在模板DNA时,DSB主要通过同源重组(HR)进行修复,而在不存在模板DNA时,则通过非同源末端连接(NHEJ)进行修复。此外,微同源介导的末端连接(MMEJ)和单链退火(SSA)提供了备份的DSB修复途径。然而,控制其使用的机制仍然知之甚少。通过使用红外后泛素系统的高分辨率CRISPR屏幕,我们系统地揭示了细胞存活所需的基因,并阐明了E3泛素连接酶SCFcyclinF在细胞周期依赖性DSB修复中的关键作用.我们显示SCFcyclinF介导的EXO1降解阻止有丝分裂中的DNA末端切除,允许MMEJ发生。此外,我们确定了一个保守的细胞周期蛋白F识别基序,与其他细胞周期蛋白使用的不同,在细胞周期控制的细胞周期蛋白特异性方面具有广泛的意义。
    Ubiquitination is a crucial posttranslational modification required for the proper repair of DNA double-strand breaks (DSBs) induced by ionizing radiation (IR). DSBs are mainly repaired through homologous recombination (HR) when template DNA is present and nonhomologous end joining (NHEJ) in its absence. In addition, microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA) provide backup DSBs repair pathways. However, the mechanisms controlling their use remain poorly understood. By using a high-resolution CRISPR screen of the ubiquitin system after IR, we systematically uncover genes required for cell survival and elucidate a critical role of the E3 ubiquitin ligase SCFcyclin F in cell cycle-dependent DSB repair. We show that SCFcyclin F-mediated EXO1 degradation prevents DNA end resection in mitosis, allowing MMEJ to take place. Moreover, we identify a conserved cyclin F recognition motif, distinct from the one used by other cyclins, with broad implications in cyclin specificity for cell cycle control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过替代非同源末端连接(alt-NHEJ)途径修复DNA双链断裂(DSB)显着导致遗传不稳定性。然而,控制alt-NHEJ途径选择的机制,特别是它与DSB复杂性的关联,由于缺乏合适的报告系统,仍然难以捉摸。在这项研究中,我们建立了一个独特的大肠杆菌报告系统,用于检测复杂的DSB引发的替代末端连接(A-EJ),alt-NHEJ样通路。通过利用各种类型的电离辐射来产生具有不同复杂程度的DSB,我们发现DSB的高复杂度可能是A-EJ选择的决定因素。为了促进高复杂度DSB的有效修复,A-EJ采用不同的分子模式,例如较长的微同源连接和非模板化核苷酸添加。此外,A-EJ的选择受DSB基因座附近的同源性程度的调节,与同源重组机器竞争。这些发现进一步增强了对A-EJ/alt-NHEJ途径选择的理解。
    The repair of DNA double-strand breaks (DSBs) through alternative non-homologous end-joining (alt-NHEJ) pathway significantly contributes to genetic instability. However, the mechanism governing alt-NHEJ pathway choice, particularly its association with DSB complexity, remains elusive due to the absence of a suitable reporter system. In this study, we established a unique Escherichia coli reporter system for detecting complex DSB-initiated alternative end-joining (A-EJ), an alt-NHEJ-like pathway. By utilizing various types of ionizing radiation to generate DSBs with varying degrees of complexity, we discovered that high complexity of DSBs might be a determinant for A-EJ choice. To facilitate efficient repair of high-complexity DSBs, A-EJ employs distinct molecular patterns such as longer micro-homologous junctions and non-templated nucleotide addition. Furthermore, the A-EJ choice is modulated by the degree of homology near DSB loci, competing with homologous recombination machinery. These findings further enhance the understanding of A-EJ/alt-NHEJ pathway choice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G0-G1期交替末端连接(A-EJ)是最近定义的诱变途径,其特征是切除的缺失和易位接头主要是直接的,并且在循环细胞中与A-EJ区分开来,后者更多地依赖于微同源介导的末端连接(MMEJ)。使用化学和遗传方法,我们通过在Igκ基因座V-J重组和染色体易位的背景下绘制RAG1/2启动的双链断裂的修复命运,系统地评估了潜在的A-EJ因子和DNA损伤应答(DDR)基因以支持这一机制.我们的发现强调了不依赖聚合酶θ的Parp1-XRCC1/LigIII轴作为中心A-EJ成分,在共济失调-毛细血管扩张症突变(ATM)激活的DDR的背景下,由53BP1支持。机械上,我们展示了短程切除的各种变化,MMEJ,和易位,通过损害具体的解除武装、复员和重返社会活动而强加的,其中包括聚合酶α,共济失调-毛细血管扩张和Rad3相关(ATR),DNA2和Mre11。这项研究促进了我们对53BP1调节域和RAG1/2裂解后复合物内DNA损伤修复的理解。
    G0-G1 phase alternative end joining (A-EJ) is a recently defined mutagenic pathway characterized by resected deletion and translocation joints that are predominantly direct and are distinguished from A-EJ in cycling cells that rely much more on microhomology-mediated end joining (MMEJ). Using chemical and genetic approaches, we systematically evaluate potential A-EJ factors and DNA damage response (DDR) genes to support this mechanism by mapping the repair fates of RAG1/2-initiated double-strand breaks in the context of Igκ locus V-J recombination and chromosome translocation. Our findings highlight a polymerase theta-independent Parp1-XRCC1/LigIII axis as central A-EJ components, supported by 53BP1 in the context of an Ataxia-telangiectasia mutated (ATM)-activated DDR. Mechanistically, we demonstrate varied changes in short-range resection, MMEJ, and translocation, imposed by compromising specific DDR activities, which include polymerase alpha, Ataxia-telangiectasia and Rad3-related (ATR), DNA2, and Mre11. This study advances our understanding of DNA damage repair within the 53BP1 regulatory domain and the RAG1/2 postcleavage complex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA-PKcs是参与DNA修复和反应途径的关键蛋白质靶标,其异常活性与各种癌症的发生和进展密切相关。在这项研究中,我们采用了基于深度学习的筛选和基于分子动力学(MD)模拟的管道,确定八个候选DNA-PKcs目标。随后的实验揭示了三种小分子(5025-0002、M769-1095和V008-1080)对DNA-PKcs介导的细胞增殖的有效抑制。这些分子表现出抗癌活性,IC50(抑制浓度为50%)值为152.6μM,30.71μM,和74.84μM,分别。值得注意的是,V008-1080增强由CRISPR/Cas9介导的同源定向修复(HDR),同时抑制非同源末端连接(NHEJ)效率。对结构-活性关系的进一步研究揭示了这些小分子与DNA-PKcs之间的结合位点和关键相互作用。这是DeepBindGCN_RG在实际药物筛选任务中的初次运用,一种新型DNA-PKcs抑制剂的成功发现证明了其作为筛选流程中核心成分的有效性。此外,这项研究为探索新的抗癌疗法和通过靶向DNA-PKcs推进基因编辑技术的发展提供了重要的见解。
    DNA-PKcs is a crucial protein target involved in DNA repair and response pathways, with its abnormal activity closely associated with the occurrence and progression of various cancers. In this study, we employed a deep learning-based screening and molecular dynamics (MD) simulation-based pipeline, identifying eight candidates for DNA-PKcs targets. Subsequent experiments revealed the effective inhibition of DNA-PKcs-mediated cell proliferation by three small molecules (5025-0002, M769-1095, and V008-1080). These molecules exhibited anticancer activity with IC50 (inhibitory concentration at 50%) values of 152.6 μM, 30.71 μM, and 74.84 μM, respectively. Notably, V008-1080 enhanced homology-directed repair (HDR) mediated by CRISPR/Cas9 while inhibiting non-homologous end joining (NHEJ) efficiency. Further investigations into the structure-activity relationships unveiled the binding sites and critical interactions between these small molecules and DNA-PKcs. This is the first application of DeepBindGCN_RG in a real drug screening task, and the successful discovery of a novel DNA-PKcs inhibitor demonstrates its efficiency as a core component in the screening pipeline. Moreover, this study provides important insights for exploring novel anticancer therapeutics and advancing the development of gene editing techniques by targeting DNA-PKcs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    规范的非同源末端连接(c-NHEJ)修复途径,通常被视为随机的,最近已被证明在CRISPR-Cas9诱变中产生可预测的结果。这种可预测性,主要是1-bp的插入和小缺失,导致了各种动物物种的计算机预测程序的开发。然而,CRISPR诱导的跨物种突变谱的可预测性仍然难以捉摸.比较人和植物物种之间的CRISPR-Cas9修复结果揭示了1-bp插入谱的显着差异。在人类细胞中观察到的高可预测性与人类Polλ的模板依赖性活动有关。然而植物Polλ表现出双重活动,通过模板化和非模板化两种方式生成1-bp插入。植物中的Polλ敲除导致仅缺失的突变,而它的过表达增强了1-bp的插入率。确定了两个保守的基序来调节植物Polλ的双重活性。这些发现揭示了物种特异性CRISPR-Cas9诱导的插入谱背后的机制,并提供了可预测的策略,通过c-NHEJ进行精确的基因组编辑。
    The canonical non-homologous end joining (c-NHEJ) repair pathway, generally viewed as stochastic, has recently been shown to produce predictable outcomes in CRISPR-Cas9 mutagenesis. This predictability, mainly in 1-bp insertions and small deletions, has led to the development of in-silico prediction programs for various animal species. However, the predictability of CRISPR-induced mutation profiles across species remained elusive. Comparing CRISPR-Cas9 repair outcomes between human and plant species reveals significant differences in 1-bp insertion profiles. The high predictability observed in human cells links to the template-dependent activity of human Polλ. Yet plant Polλ exhibits dual activities, generating 1-bp insertions through both templated and non-templated manners. Polλ knockout in plants leads to deletion-only mutations, while its overexpression enhances 1-bp insertion rates. Two conserved motifs are identified to modulate plant Polλ\'s dual activities. These findings unveil the mechanism behind species-specific CRISPR-Cas9-induced insertion profiles and offer strategies for predictable, precise genome editing through c-NHEJ.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结直肠癌(CRC)是全球最常见的恶性肿瘤之一。双链断裂(DSB)是最严重的DNA损伤类型。然而,很少有审查彻底审查DSB在CRC中的参与。最新研究表明,DSB修复在CRC中起着重要作用。例如,DSB相关基因如BRCA1、Ku-70和DNA聚合酶θ(POLQ)与CRC的发生有关,POLQ甚至影响CRC的预后和放疗耐药性。这篇综述全面总结了DSB在CRC中的作用,探讨其机制,并讨论与CRC治疗的关联。已经证明了DSB的四种途径。1.非同源末端连接(NHEJ)是主要途径。其核心基因包括Ku70和Ku80结合到断裂的末端并募集修复因子以形成介导DNA断裂连接的复合物。2.同源重组(HR)是另一个重要的途径。其关键基因包括BRCA1和BRCA2参与发现,配对,连接断裂的两端,并确保正常双链DNA结构中断裂的恢复。3.单链退火(SSA)途径,和4。POLθ介导的末端连接(alt-EJ)是备用途径。本文阐述了DSB修复途径在CRC中的作用。这可能有助于开发潜在的新治疗方法,并为CRC治疗提供新的机会,以及基于针对这些DNA修复途径的治疗策略的更多个性化治疗选择。
    Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然ROS导致DNA损伤是有据可查的,关于DNA损伤及其修复过程是否可以相反诱导氧化应激的研究有限。通过在酿酒酵母中通过I-SceI内切核酸酶表达产生位点特异性DNA双链断裂(DSB)而不损害其他细胞成分,这项研究表明,DNA修复确实会引发氧化应激。删除参与同源重组(HR)切除步骤起始的基因,就像MRX复合体一样,导致ROS的刺激。相比之下,删除作用于HR切除下游的基因抑制了ROS水平。此外,阻断非同源末端连接(NHEJ)也抑制了ROS。进一步的分析确定Rad53是以HR特异性方式传递DNA损伤信号以改变氧化还原代谢的关键参与者。这些结果表明,HR和NHEJ都可以驱动代谢变化和氧化应激,NHEJ在ROS刺激中起着更突出的作用。进一步的分析表明,DSB诱导的ROS增加与NADPH氧化酶Yno1和各种抗氧化酶的活性增强之间存在相关性。在DSB诱导后,删除抗氧化剂基因SOD1在HR缺陷型突变体如mre11Δ和rad51Δ中诱导合成致死性。这些发现揭示了DNA修复机制和细胞代谢之间的重要相互作用。提供深入了解基因毒性疗法的副作用,并可能帮助开发更有效的癌症治疗策略。
    While that ROS causes DNA damage is well documented, there has been limited investigation into whether DNA damages and their repair processes can conversely induce oxidative stress. By generating a site-specific DNA double strand break (DSB) via I-SceI endonuclease expression in S. cerevisiae without damaging other cellular components, this study demonstrated that DNA repair does trigger oxidative stress. Deleting genes participating in the initiation of the resection step of homologous recombination (HR), like the MRX complex, resulted in stimulation of ROS. In contrast, deleting genes acting downstream of HR resection suppressed ROS levels. Additionally, blocking non-homologous end joining (NHEJ) also suppressed ROS. Further analysis identified Rad53 as a key player that relays DNA damage signals to alter redox metabolism in an HR-specific manner. These results suggest both HR and NHEJ can drive metabolism changes and oxidative stress, with NHEJ playing a more prominent role in ROS stimulation. Further analysis revealed a correlation between DSB-induced ROS increase and enhanced activity of NADPH oxidase Yno1 and various antioxidant enzymes. Deleting the antioxidant gene SOD1 induced synthetic lethality in HR-deficient mutants like mre11Δ and rad51Δ upon DSB induction. These findings uncover a significant interplay between DNA repair mechanisms and cellular metabolism, providing insights into understanding the side effects of genotoxic therapies and potentially aiding development of more effective cancer treatment strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号