DNA End Resection

DNA 末端切除
  • 文章类型: Journal Article
    非同源末端连接途径对DNA双链断裂的修复是由Ku与DNA末端的结合引发的。多种Ku蛋白在体外加载到线性DNA上。然而,在细胞中,Ku负载限制在每个DNA末端1-2个分子。执行这一限制的机制目前尚不清楚。这里,我们表明,DNA依赖性蛋白激酶(DNA-PKcs)的催化亚基,但不是它的蛋白激酶活性,需要防止过度的Ku进入染色质。Ku的积累进一步受到两种机制的限制:neddylation/FBXL12依赖性过程在整个细胞周期中主动去除负载的Ku分子,以及在S期运行的CtIP/ATM依赖性机制。最后,我们证明了Ku负载的错误调节导致DNA末端附近的转录受损。一起,我们的数据揭示了防止Ku侵入染色质和干扰其他DNA交易的多种机制.
    Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    保守的Rad2/XPG家族5'-3'外切核酸酶,核酸外切酶1(Exo1),在DNA代谢中起许多作用,包括通过同源重组解决DNA双链断裂(DSB)。先前的研究提供了证据,表明Exo1的末端切除活性在酵母和哺乳动物中被Cdk1/2家族细胞周期蛋白依赖性和检查点激酶下调。包括在有丝分裂细胞中起作用的出芽酵母激酶Rad53。在这里,我们提供了证据,表明Rad53的旁系主要减数分裂激酶Mek1限制了在程序性减数分裂DNA断裂位点的5'-3'单链切除。突变分析表明,Mek1抑制Exo1的机制与Rad53不同。
    The conserved Rad2/XPG family 5\'-3\' exonuclease, exonuclease 1 (Exo1), plays many roles in DNA metabolism including during resolution of DNA double-strand breaks via homologous recombination. Prior studies provided evidence that the end resection activity of Exo1 is downregulated in yeast and mammals by Cdk1/2 family cyclin-dependent and checkpoint kinases, including budding yeast kinase Rad53 which functions in mitotic cells. Here, we provide evidence that the master meiotic kinase Mek1, a paralog of Rad53, limits 5\'-3\' single-strand resection at the sites of programmed meiotic DNA breaks. Mutational analysis suggests that the mechanism of Exo1 suppression by Mek1 differs from that of Rad53.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    聚(ADP-核糖)聚合酶抑制剂(PARPis)在具有同源重组(HR)基因突变的肿瘤中表现出显著的抗癌活性。然而,其他DNA修复蛋白在PARPi诱导的致死率中的作用仍然难以捉摸。这里,我们揭示了FANCM促进PARPi抵抗,而与核心Fanconi贫血(FA)复合物无关。FANCM耗尽细胞保留HR能力,对PARPis的反应独立于BRCA1。FANCM耗竭导致PARPi暴露后第二个S期DNA损伤增加,由第一S期复制叉后的单链DNA(ssDNA)间隙形成驱动。这些缺口来自53BP1-和引发酶以及DNA定向聚合酶(PRIMPOL)依赖性机制。值得注意的是,FANCM耗尽的细胞也表现出塌陷叉的切除减少,而53BP1缺失恢复切除并降低PARPi敏感性。我们的结果表明,FANCM可以抵消53BP1以修复PARPi诱导的DNA损伤。此外,FANCM耗竭导致PARPi治疗后染色质桥和微核形成增加,阐明FANCM耗竭细胞中广泛细胞死亡的潜在机制。
    Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环孢菌素A(CsA)诱导LIG4综合征成纤维细胞DNA双链断裂,特别是在通过S阶段过渡时。尚未描述其基础。CsA诱导的基因组不稳定性可能反映亲环蛋白A(CYPA)在DNA修复中的直接作用。CYPA是肽基-氨酰顺反异构酶(PPI)。CsA抑制CYPA的PPI活性。使用涉及CRISPR/Cas9工程的综合方法,siRNABioID,免疫共沉淀,通路特异性DNA修复研究以及蛋白质表达相互作用分析,我们描述了CYPA丢失和抑制对DNA修复的新影响。我们表征了CYPA与MRE11-RAD50-NBS1复合物的NBS1成分的直接相互作用,提供CYPA在DNA末端切除水平上影响DNA修复的证据。我们定义了一组与CYPA丢失和抑制相关的遗传脆弱性,确定DNA复制叉保护是生存力的重要决定因素。我们探索了如何利用CYPA抑制来选择性杀死共享特征性基因组不稳定性谱的癌症的例子。包括MYCN驱动的神经母细胞瘤,多发性骨髓瘤和慢性粒细胞白血病。这些发现提出了亲环蛋白抑制剂的再利用策略。
    Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA修复途径的治疗靶向是癌症治疗中的新兴概念。靶向特定DNA修复过程的化合物,比如那些修补DNA双链断裂(DSB)的人,因此具有治疗意义。UNC3866是一种小分子,靶向CBX4,一种染色体盒蛋白,和SUMOE3连接酶。作为DNA末端切除的关键调节剂-通过同源重组(HR)进行DSB修复的先决条件-CBX4促进DNA切除因子CtIP的功能。这里,我们显示,用UNC3866治疗对HR缺陷明显敏感,NHEJ-过度活跃的癌细胞对电离辐射(IR),虽然它在选定的HR精通细胞中无毒。与针对CtIP功能的UNC3866一致,它抑制末端切除依赖性DNA修复,包括HR,替代端部连接(alt-EJ),和单链退火(SSA)。这些发现提出了这样一种可能性,即我们定义的UNC3866介导的对末端切除过程的抑制突出了选择性杀死HR无效癌症的独特脆弱性。
    The therapeutic targeting of DNA repair pathways is an emerging concept in cancer treatment. Compounds that target specific DNA repair processes, such as those mending DNA double-strand breaks (DSBs), are therefore of therapeutic interest. UNC3866 is a small molecule that targets CBX4, a chromobox protein, and a SUMO E3 ligase. As a key modulator of DNA end resection-a prerequisite for DSB repair by homologous recombination (HR)-CBX4 promotes the functions of the DNA resection factor CtIP. Here, we show that treatment with UNC3866 markedly sensitises HR-deficient, NHEJ-hyperactive cancer cells to ionising radiation (IR), while it is non-toxic in selected HR-proficient cells. Consistent with UNC3866 targeting CtIP functions, it inhibits end-resection-dependent DNA repair including HR, alternative end joining (alt-EJ), and single-strand annealing (SSA). These findings raise the possibility that the UNC3866-mediated inhibition of end resection processes we define highlights a distinct vulnerability for the selective killing of HR-ineffective cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    双链断裂(DSB)是对基因组稳定性构成重大威胁的DNA损伤。通过同源重组(HR)途径修复DSB之前是DNA末端切除,DNA从DSB的5'到3'核解降解。我们和其他人先前确定了RNF138的作用,RING手指E3泛素连接酶,刺激DNA末端切除和HR。然而,关于在DSB修复的背景下如何调节RNF138的功能知之甚少。这里,我们显示,在细胞周期的S和G2期,RNF138在T27残基被细胞周期蛋白依赖性激酶(CDK)活性磷酸化。我们还观察到RNF138是泛素化的组成型,泛素化部分发生在残基K158上,并在S/G2阶段升高。有趣的是,基因毒性应激后RNF138泛素化降低。通过在残基T27,K158和先前鉴定的S124ATM磷酸化位点处突变RNF138(Han等人。,2016年,参考。22),我们发现在所有三个位置的翻译后修饰介导DSB修复。表达T27A的细胞,K158R,和S124A变异的RNF138在DNA末端切除受损,HR活动,并且与表达野生型RNF138的那些相比对电离辐射更敏感。我们的发现进一步阐明了在HR期间RNF138活性如何被细胞控制。
    Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5\' to 3\' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138\'s function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    非同源末端连接途径对DNA双链断裂的修复是由Ku与DNA末端的结合引发的。鉴于其对目标的高度亲和力,多种Ku蛋白在体外加载到线性DNA上。然而,在细胞中,Ku负载限制在每个DNA末端1-2个分子。执行此限制的机制目前未知。在这里,我们显示了DNA依赖性蛋白激酶(DNA-PKcs)的催化亚基,但不是它的蛋白激酶活性,需要防止过度的Ku进入染色质。Ku的积累进一步受到两种机制的限制:neddylation/FBXL12依赖性过程在整个细胞周期中主动去除负载的Ku分子,以及在S期起作用的CtIP/ATM依赖性机制。最后,我们证明了Ku负载的错误调节导致DNA末端附近的转录受损。我们的数据一起揭示了多层协调机制,以防止Ku入侵染色质并干扰其他DNA交易。
    DNA-PKcs在结构上阻止Ku滑入人类和非洲爪鱼的染色质Neddylation/FBXL12依赖性机制限制了Ku在S相中在色谱上的积累,ATM/CtIP克服了Ku积累在没有DNA-PKcs的情况下,DNA末端附近的转录被抑制。
    DNA末端结合蛋白Ku可以滑动到裸露的DNA上,但这在细胞中受到限制。使用人类细胞和非洲爪狼卵提取物,DNA-PKcs被认为是Ku进入染色质的主要结构障碍,以及两种在没有DNA-PKcs的情况下限制Ku积累的活性机制。
    Repair of DNA double strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Given its high affinity for ends, multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ~1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unknown. Here we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process which actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism which operates in S-phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together our data shed light on the multiple layers of coordinated mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    与BRCA1相关的真正有趣的新基因(RING)结构域1(BARD1)复合的肿瘤抑制乳腺癌1(BRCA1)是RING型泛素E3连接酶,可修饰核小体组蛋白和其他底物。BRCA1-BARD1E3活性在肿瘤抑制中的重要性仍然存在很大争议,主要源于研究突变连接酶缺陷的BRCA1-BARD1物种,我们在这里显示仍然保留了显着的连接酶活性。使用全长BRCA1-BARD1,我们建立了稳健的BRCA1-BARD1介导的具有特异性的泛素化,揭示多种活动调节模式,并构建真正的连接酶无效变体和在靶向核小体组蛋白中特异性受损的变体。表达这些BRCA1-BARD1功能分离等位基因的细胞对DNA损伤剂过敏。此外,我们证明BRCA1-BARD1连接酶不仅是同源定向修复(HDR)过程中DNA切除所必需的,而且还有助于HDR完成的后期阶段.总之,我们的发现揭示了至关重要的,BRCA1-BARD1连接酶活性在通过HDR进行基因组修复中的作用,解决先前关于BRCA1-BARD1连接酶功能的争议,并催化发现与肿瘤抑制有关的底物的新努力。
    The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:我们先前的研究首次表明,结合ATR的长链非编码RNA(lncRNA)对于ATR功能是必需的,并促进了癌症抗性。然而,在ATR激活中的特定lncRNAs仍不清楚,这限制了我们对这一关键生物过程的全面理解。
    方法:使用RNA免疫沉淀(RIP),然后进行RNA测序来鉴定ATR结合lncRNAs,使用RIP-qPCR测定进一步验证。免疫荧光染色和免疫印迹法检测DNA损伤修复因子的激活。在确定了scaRNA2对DNA损伤试剂的细胞敏感性后,在患者来源的类器官和异种移植临床前模型中研究了scaRNA2对放疗的影响.在从直肠癌患者分离的组织中也验证了scaRNA2的临床相关性。
    结果:ScaRNA2被鉴定为最富集的ATR结合lncRNA,并且被发现对于同源重组(HR)介导的DNA损伤修复至关重要。此外,scaRNA2敲低消除了对DNA损伤的ATR及其底物的募集。机械上,观察到scaRNA2对于Exo1介导的DNA末端切除是必需的,并且将MRN复合物与ATR激活桥接。下调scaRNA2可有效提高癌细胞对多种DNA损伤相关放化疗的敏感性。临床前,scaRNA2的敲减改善了放疗对患者来源的类器官和异种移植模型的影响.最后,在对放疗耐药的临床患者中,与ATR共定位的scaRNA2也增加.
    结论:ScaRNA2被鉴定为与ATR结合的最丰富的lncRNA,并被证明可以将DNA末端切除与ATR激活桥接;因此,它可以作为癌症联合放化疗治疗的有效靶点。
    BACKGROUND: Our previous study first showed that ATR-binding long noncoding RNA (lncRNA) is necessary for ATR function and promotes cancer resistance. However, the specific lncRNAs instrumental in ATR activation remain largely unclear, which limits our comprehensive understanding of this critical biological process.
    METHODS: RNA immunoprecipitation (RIP) followed by RNA sequencing was employed to identify ATR-binding lncRNAs, which were further validated using RIP-qPCR assays. Immunofluorescence staining and Western blotting were applied to detect the activation of DNA damage repair factors. After the effect of scaRNA2 on cellular sensitivity to DNA-damaging reagents was determined, the effects of scaRNA2 on radiotherapy were investigated in patient-derived organoids and xenograft preclinical models. The clinical relevance of scaRNA2 was also validated in tissues isolated from rectal cancer patients.
    RESULTS: ScaRNA2 was identified as the most enriched ATR-binding lncRNA and was found to be essential for homologous recombination (HR) mediated DNA damage repair. Furthermore, scaRNA2 knockdown abrogated the recruitment of ATR and its substrates in response to DNA damage. Mechanistically, scaRNA2 was observed to be necessary for Exo1-mediated DNA end resection and bridged the MRN complex to ATR activation. Knockdown of scaRNA2 effectively increased the sensitivity of cancer cells to multiple kinds of DNA damage-related chemoradiotherapy. Preclinically, knockdown of scaRNA2 improved the effects of radiotherapy on patient-derived organoids and xenograft models. Finally, an increase in scaRNA2 colocalized with ATR was also found in clinical patients who were resistant to radiotherapy.
    CONCLUSIONS: ScaRNA2 was identified as the most abundant lncRNA bound to ATR and was demonstrated to bridge DNA end resection to ATR activation; thus, it could be applied as a potent target for combined cancer treatments with chemoradiotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中心体是在微管组织中起作用的细胞质细胞器,其也被提出作为细胞信号传导的枢纽。DNA损伤反应的完全激活需要一些中心体成分。然而,尚不清楚中心体是否调节特定的DNA修复途径。这里,我们表明,中心体的存在是完全激活重组所必需的,特别是为了完全许可它的初始步骤,所谓的DNA末端切除.此外,我们确定了一个中心摩尔结构,远端附件,和一个特定的因素,CEP170,作为关键的中心体成分参与重组和切除的调节。缺乏中心体或CEP170耗尽的细胞是,因此,对DNA损伤剂过敏.此外,多种癌症类型中CEP170的低水平与特定突变特征和更好预后相关的突变负荷增加相关,这表明CEP170的变化可以作为突变驱动因素,但也可以用于改善当前的肿瘤治疗。
    The centrosome is a cytoplasmic organelle with roles in microtubule organization that has also been proposed to act as a hub for cellular signaling. Some centrosomal components are required for full activation of the DNA damage response. However, whether the centrosome regulates specific DNA repair pathways is not known. Here, we show that centrosome presence is required to fully activate recombination, specifically to completely license its initial step, the so-called DNA end resection. Furthermore, we identify a centriolar structure, the subdistal appendages, and a specific factor, CEP170, as the critical centrosomal component involved in the regulation of recombination and resection. Cells lacking centrosomes or depleted for CEP170 are, consequently, hypersensitive to DNA damaging agents. Moreover, low levels of CEP170 in multiple cancer types correlate with an increase of the mutation burden associated with specific mutational signatures and a better prognosis, suggesting that changes in CEP170 can act as a mutation driver but could also be targeted to improve current oncological treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号