DAF-2

DAF - 2
  • 文章类型: Journal Article
    滞育是一种内分泌介导的代谢和生长停滞状态,以应对不利的外部环境。线虫秀丽隐杆线虫可以在胚胎期进入滞育/停滞,幼虫,或成年阶段,当受到有害的外部环境。当动物在没有食物的情况下孵化时,会发生幼虫阶段1(L1)的停滞。先前的工作表明,胰岛素途径在调节L1阻滞中起着重要作用。然而,下游信号分子机制和生物标志物仍然缺失。在这项研究中,我们发现SaPosin样蛋白家族成员SPP-5在L1阻滞期间显著上调,这表明它可以作为L1阻滞生物标志物。使用RNA干扰,我们证明spp-5敲低加速幼虫发育,而过度表达导致L1阻滞。始终如一,SPP-5水平在L1阻滞daf-2(e1370)突变体中显著上调,和spp-5(RNAi)抑制daf-2(e1370)诱导的L1阻滞。这些结果表明,SPP-5可以作为L1阻滞的生物标志物,并可能通过胰岛素信号通路促进L1阻滞。
    Diapause is an endocrine-mediated metabolic and growth arrest state in response to unfavorable external environments. The nematode Caenorhabditis elegans can enter diapause/arrest during embryonic, larval, or adult stages when subjected to detrimental external environments. Larval stage 1 (L1) arrest happens when animals hatch without food. Previous work has shown that the insulin pathway plays a prominent role in regulating L1 arrest. However, the downstream signal molecular mechanisms and biomarkers are still missing. In this study, we showed that SaPosin-like Protein family member SPP-5 is significantly upregulated during L1 arrest, suggesting that it could act as an L1 arrest biomarker. Using RNA interference we demonstrated that spp-5  knockdown accelerated larval development, while the overexpression resulted in L1 arrest. Consistently, SPP-5 level was significantly up-regulated in the L1 arrest daf-2(e1370) mutants, and spp-5(RNAi) suppressed the daf-2(e1370) induced L1 arrest. These results suggest that SPP-5 can serve as an L1 arrest biomarker and promote the arrest probably via the insulin signaling pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Shc蛋白在许多不同的信号通路中起作用,其中它们介导磷酸化依赖性蛋白质-蛋白质相互作用。这些蛋白质的特征是存在两个磷酸酪氨酸结合域,N-末端PTB和C-末端SH2。我们描述了一个以前无法识别的秀丽隐杆线虫Shc基因,shc-3并表征其在应激反应中的作用。shc-3和shc-1都是L1停滞的长期生存和热应激的生存所必需的,然而,他们不会重复行事,而是在这些过程中发挥不同的作用。shc-3的丢失并没有进一步降低daf-16突变体在L1停滞中的存活率,提示与SHC-1一样,SHC-3在胰岛素样信号通路中起作用。在没有SHC-3的情况下,DAF-16的核进出速度变慢,这表明SHC-3是DAF-16信号快速变化所必需的。
    Shc proteins function in many different signaling pathways where they mediate phosphorylation-dependent protein-protein interactions. These proteins are characterized by the presence of two phosphotyrosine-binding domains, an N-terminal PTB and a C-terminal SH2. We describe a previously unrecognized C. elegans Shc gene, shc-3 and characterize its role in stress response. Both shc-3 and shc-1 are required for long-term survival in L1 arrest and survival in heat stress, however, they do not act redundantly but rather play distinct roles in these processes. Loss of shc-3 did not further decrease survival of daf-16 mutants in L1 arrest, suggesting that like SHC-1, SHC-3 functions in the Insulin-like signaling pathway. In the absence of SHC-3, DAF-16 nuclear entry and exit are slowed, suggesting that SHC-3 is required for rapid changes in DAF-16 signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胰岛素/IGF信号(IIS)调节发育和代谢可塑性。胰岛素样肽表达和分泌的条件调节在不同环境中促进不同表型。然而,IIS也可以由其他了解较少的机制。例如,秀丽隐杆线虫中唯一已知的胰岛素/IGF受体的稳定性,DAF-2/INSR,受CHIP依赖性泛素化调节。chn-1/CHIP的破坏通过增加成人的DAF-2/INSR丰度和IIS活性来降低秀丽隐杆线虫的寿命。同样,泛素化位点的突变导致daf-2(gk390525)在成人中显示功能获得表型。然而,我们表明该等位基因在幼虫中表现出功能丧失的表型,在开发过程中,它对IIS活动的影响从负面转变为正面。相比之下,等位基因在高温下培养的幼虫中起着功能增益的作用,抑制温度依赖性道尔形成。chn-1/CHIP的破坏导致饥饿的L1幼虫的IIS活性增加,不同于DAF-2(gk390525)。CHN-1/CHIP在多个位点泛素化DAF-2/INSR。这些结果表明,与IIS负调控功能相关的位点在幼虫和成虫中有所不同,在不同的温度下,以营养依赖的方式,揭示IIS调节的附加层。
    类胰岛素信号在帮助动物适应不同的环境条件中起着至关重要的作用。胰岛素分子丰度的差异驱动胰岛素信号的差异,影响生长,新陈代谢,和对压力条件的抵抗力。在线虫线虫中的先前工作表明,胰岛素受体的靶向降解也调节胰岛素信号传导。我们在这里表明,这个过程受发育阶段的影响,营养可用性,和温度,揭示了胰岛素样信号在这个有价值的动物模型中被调节的其他方式。
    Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms. For example, stability of the only known insulin/IGF receptor in C. elegans, DAF-2/INSR, is regulated by CHIP-dependent ubiquitination. Disruption of chn-1/CHIP reduces longevity in C. elegans by increasing DAF-2/INSR abundance and IIS activity in adults. Likewise, mutation of a ubiquitination site causes daf-2(gk390525) to display gain-of-function phenotypes in adults. However, we show that this allele displays loss-of-function phenotypes in larvae, and that its effect on IIS activity transitions from negative to positive during development. In contrast, the allele acts like a gain-of-function in larvae cultured at high temperature, inhibiting temperature-dependent dauer formation. Disruption of chn-1/CHIP causes an increase in IIS activity in starved L1 larvae, unlike daf-2(gk390525). CHN-1/CHIP ubiquitinates DAF-2/INSR at multiple sites. These results suggest that the sites that are functionally relevant to negative regulation of IIS vary in larvae and adults, at different temperatures, and in nutrient-dependent fashion, revealing additional layers of IIS regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    已经提出肠道微生物组影响动物发育和生理学的许多方面。然而,在大多数情况下,具体的细菌种类和细菌发挥这些作用的分子机制都是未知的。这里,我们使用模型动物秀丽隐杆线虫建立了高通量筛选平台,用于鉴定影响动物发育和生理的细菌种类和机制.从我们最初的筛选中,我们发现许多芽孢杆菌属物种可以恢复正常的动物发育为胰岛素信号突变动物,否则这些动物不会发育到成年。为了确定芽孢杆菌如何影响动物发育,我们筛选了枯草芽孢杆菌的完整非必需基因敲除文库,以寻找不再恢复成年发育的突变体。我们发现芽孢杆菌基因speB是动物发育所必需的。在没有speB的情况下,枯草芽孢杆菌产生过量的N1-氨基丙基胍基胺。该多胺通过多胺转运蛋白CATP-5被动物肠细胞吸收。当这种分子被摄取足够的量时,它会抑制动物线粒体功能,并导致不同种类的动物停止发育。据我们所知,这些是首次观察到枯草芽孢杆菌可以产生N1-氨基丙基胍丁胺,并且肠道微生物组产生的多胺可以拮抗动物发育和线粒体功能。鉴于芽孢杆菌物种经常从动物肠道微生物组中分离,包括来自人类,我们认为,肠道杆菌产生的多胺的改变也可能影响其他物种的动物发育和代谢,甚至可能导致人类的发育和代谢病理。此外,我们的发现表明,秀丽隐杆线虫可以作为模型动物,对改变动物生理的细菌种类和生物活性分子进行高通量筛选。
    The gut microbiome has been proposed to influence many aspects of animal development and physiology. However, both the specific bacterial species and the molecular mechanisms by which bacteria exert these effects are unknown in most cases. Here, we established a high throughput screening platform using the model animal Caenorhabditis elegans for identifying bacterial species and mechanisms that influence animal development and physiology. From our initial screens we found that many Bacillus species can restore normal animal development to insulin signaling mutant animals that otherwise do not develop to adulthood. To determine how Bacilli influence animal development we screened a complete non-essential gene knockout library of Bacillus subtilis for mutants that no longer restored development to adulthood. We found the Bacillus gene speB is required for animal development. In the absence of speB, B. subtilis produces excess N1-aminopropylagmatine. This polyamine is taken up by animal intestinal cells via the polyamine transporter CATP-5. When this molecule is taken up in sufficient quantities it inhibits animal mitochondrial function and causes diverse species of animals to arrest their development. To our knowledge, these are the first observations that B. subtilis can produce N1-aminopropylagmatine and that polyamines produced by intestinal microbiome species can antagonize animal development and mitochondrial function. Given that Bacilli species are regularly isolated from animal intestinal microbiomes, including from humans, we propose that altered polyamine production from intestinal Bacilli is likely to also influence animal development and metabolism in other species and potentially even contribute developmental and metabolic pathologies in humans. In addition, our findings demonstrate that C. elegans can be used as a model animal to conduct high throughput screens for bacterial species and bioactive molecules that alter animal physiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    在成熟过程中,卵母细胞在果蝇中经历了最近发现的线粒体蛋白质组重塑事件1,青蛙1,人类2。这种卵母细胞线粒体重塑,其中包括电子传递链(ETC)亚基丰度的实质性变化1,2,受母体胰岛素信号1调节。为什么卵母细胞经历线粒体重塑是未知的,有人推测,保护卵母细胞免受活性氧(ROS)2的遗传毒性损伤可能是一种进化上保守的机制。在秀丽隐杆线虫中,我们之前发现,母体暴露于渗透应激会导致后代存活率增加50倍,以应对未来的渗透应激3。像线粒体重塑一样,我们发现,这种代际适应也受到胰岛素信号对卵母细胞3的调节。这里,我们使用蛋白质组学和基因操作表明,通过依赖于母体卵母细胞中ETC组成的机制,向卵母细胞传递胰岛素信号调节后代适应未来应激的能力。具体来说,我们发现,母本表达的nduf-7(复杂的I亚基)或isp-1(复杂的III亚基)突变等位基因改变了后代在孵化时对渗透胁迫的反应,而与后代基因型无关。此外,我们发现,在生殖细胞(卵母细胞)中表达野生型44isp-1足以恢复后代对渗透胁迫的正常反应。化学诱变筛选显示,母体ETC成分通过改变后代的AMP激酶功能来调节后代对应激反应,进而调节ATP和甘油代谢以响应持续的渗透胁迫。据我们所知,这些数据首次表明,需要适当的卵母细胞ETC组成,才能将母亲的环境与后代代谢的适应性变化联系起来。数据还提出了一种可能性,即不同动物表现出胰岛素调节的卵母细胞线粒体重塑的原因是为了调整后代代谢以最佳地匹配其母亲的环境。
    During maturation oocytes undergo a recently discovered mitochondrial proteome remodeling event in flies1, frogs1, and humans2. This oocyte mitochondrial remodeling, which includes substantial changes in electron transport chain (ETC) subunit abundance1,2, is regulated by maternal insulin signaling1. Why oocytes undergo mitochondrial remodeling is unknown, with some speculating that it might be an evolutionarily conserved mechanism to protect oocytes from genotoxic damage by reactive oxygen species (ROS)2. In Caenorhabditis elegans, we previously found that maternal exposure to osmotic stress drives a 50-fold increase in offspring survival in response to future osmotic stress3. Like mitochondrial remodeling, we found that this intergenerational adaptation is also regulated by insulin signaling to oocytes3. Here, we used proteomics and genetic manipulations to show that insulin signaling to oocytes regulates offspring\'s ability to adapt to future stress via a mechanism that depends on ETC composition in maternal oocytes. Specifically, we found that maternally expressed mutant alleles of nduf-7 (complex I subunit) or isp-1 (complex III subunit) altered offspring\'s response to osmotic stress at hatching independently of offspring genotype. Furthermore, we found that expressing wild-type isp-1 in germ cells (oocytes) was sufficient to restore offspring\'s normal response to osmotic stress. Chemical mutagenesis screens revealed that maternal ETC composition regulates offspring\'s response to stress by altering AMP kinase function in offspring which in turn regulates both ATP and glycerol metabolism in response to continued osmotic stress. To our knowledge, these data are the first to show that proper oocyte ETC composition is required to link a mother\'s environment to adaptive changes in offspring metabolism. The data also raise the possibility that the reason diverse animals exhibit insulin regulated remodeling of oocyte mitochondria is to tailor offspring metabolism to best match the environment of their mother.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    老化过程本质上是复杂的,涉及在不同生物尺度相互作用的多种机制。线虫秀丽隐杆线虫是一种简单的模型生物,在发现延长寿命的突变后,在衰老研究中发挥了关键作用。在秀丽隐杆线虫中鉴定的长寿途径随后被发现是保守的,并且在多个物种中调节寿命。这些途径与衰老的基本标志相交,包括营养感知,表观遗传改变,蛋白质平衡丧失,和线粒体功能障碍。在这里,我们总结了最近在C.elegans中获得的数据,强调了在组织和时间尺度上研究衰老的重要性。然后,我们将重点放在神经肌肉系统上,以说明随年龄变化的动力学。我们描述了最近开发的工具,这些工具能够解剖胰岛素/IGF-1受体直系同源DAF-2对特定组织和不同年龄的蠕虫活动调节的贡献。我们还讨论了使用这些新工具的指南和潜在陷阱。我们进一步强调他们带来的机会,尤其是结合最近的转录组数据,来解决和解决衰老的内在复杂性。了解不同的衰老过程如何在不同生命阶段的组织内部和组织之间相互作用,最终可以为年龄相关疾病提供潜在的干预点。
    The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰岛素改变了几种大脑功能,胰岛素水平的扰动可能是帕金森病的一个诱发因素,一种与多巴胺能神经元退化有关的疾病。目前尚不清楚胰岛素是否会改变多巴胺信号通路并调节学习和记忆。在秀丽隐杆线虫中,daf-2胰岛素受体突变体在接受嗅觉适应训练时具有扩展的记忆。在这项研究中,我们发现多巴胺神经元中daf-2受体的缺失会导致这种不寻常的学习行为。我们的结果表明,记忆中的胰岛素功能是多巴胺依赖性的。在没有daf-2受体的情况下,多巴胺神经元中的钙内流显示出一种改变的模式,导致记忆回忆延长。这些结果表明,学习和记忆涉及胰岛素-多巴胺串扰。这种途径的不平衡导致记忆回忆的变化。
    Insulin alters several brain functions, and perturbations in insulin levels could be a precipitating factor for Parkinson\'s disease, a disease associated with the degeneration of dopaminergic neurons. It is unclear whether insulin alters the dopamine signaling pathway and modulates learning and memory. In Caenorhabditis elegans, daf-2 insulin receptor mutants have extended memory when trained for olfactory adaptation. In this study, we show that the absence of daf-2 receptors in dopamine neurons results in this unusual learning behavior. Our results show that insulin function in memory is dopamine-dependent. In the absence of the daf-2 receptor, the calcium influx in dopamine neurons shows an altered pattern resulting in memory recall for an extended period. These results indicate that learning and memory involve insulin-dopamine crosstalk. Imbalances in this pathway result in changes in memory recall.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    突触的形成和维持受到精确调控,而这种失调往往会导致神经发育或神经退行性疾病。除了内在的基因编码的信号通路,突触结构和功能也受到外在因素的调节,比如营养。O-GlcNAc转移酶(OGT),一个营养传感器,在神经系统中丰富,是突触可塑性所必需的,学习,和记忆。然而,OGT是否参与突触发育以及该过程的潜在机制尚不清楚.在这项研究中,我们发现秀丽隐杆线虫中的OGT同源物OGT-1,调节AIY中间神经元的突触前组装。胰岛素受体DAF-2作用于OGT-1的上游,通过正向调节ogt-1的表达来促进突触前组装。该胰岛素-OGT-1轴最可能通过调节神经元活动起作用。在这项研究中,我们阐明了突触发育的新机制,并提供了突触发育和胰岛素相关神经系统疾病之间的潜在联系。
    The formation and maintenance of synapses are precisely regulated, and the misregulation often leads to neurodevelopmental or neurodegenerative disorders. Besides intrinsic genetically encoded signaling pathways, synaptic structure and function are also regulated by extrinsic factors, such as nutrients. O-GlcNAc transferase (OGT), a nutrient sensor, is abundant in the nervous system and required for synaptic plasticity, learning, and memory. However, whether OGT is involved in synaptic development and the mechanism underlying the process are largely unknown. In this study, we found that OGT-1, the OGT homolog in C. elegans, regulates the presynaptic assembly in AIY interneurons. The insulin receptor DAF-2 acts upstream of OGT-1 to promote the presynaptic assembly by positively regulating the expression of ogt-1. This insulin-OGT-1 axis functions most likely by regulating neuronal activity. In this study, we elucidated a novel mechanism for synaptic development, and provided a potential link between synaptic development and insulin-related neurological disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:秀丽隐杆线虫中的极性代谢物(C.秀丽隐杆线虫)主要使用亲水相互作用液相色谱与质谱联用(HILIC-MS)进行分析。与质谱联用的毛细管电泳(CE-MS)代表另一种适用于极性和带电分析物的互补分析平台。
    目的:我们比较了CE-MS和HILIC-MS,以分析与秀丽隐杆线虫相关的60种参考标准,并特别研究了CE分离的优势。此外,我们采用CE-MS作为补充分析方法来研究秀丽隐杆线虫样品中的极性代谢物,特别是在长寿的背景下,以解决其代谢组的不同部分。
    方法:我们使用HILIC-MS和CE-MS使用Q-ToF-MS仪器分析了来自秀丽隐杆线虫daf-2功能丧失突变体和野生型(WT)样品的60个参考标准以及代谢物提取物。
    结果:CE分离显示较窄的峰宽和在不同浓度下估计的响应函数的更好的线性,这与MS信号的较低饱和度有关。此外,与HILIC-MS相比,CE在化合物的分离中表现出明显的选择性,为目标化合物的分析提供补充信息。对daf-2突变体和WT样品的秀丽隐杆线虫代谢产物的分析揭示了通过HILIC-MS鉴定的共有代谢产物的显著改变。以及不同代谢物的存在。
    结论:CE-MS已成功应用于秀丽隐杆线虫代谢组学,能够恢复已知的以及识别新的推定的长寿生物标志物。
    BACKGROUND: Polar metabolites in Caenorhabditis elegans (C. elegans) have predominantly been analyzed using hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS). Capillary electrophoresis coupled to mass spectrometry (CE-MS) represents another complementary analytical platform suitable for polar and charged analytes.
    OBJECTIVE: We compared CE-MS and HILIC-MS for the analysis of a set of 60 reference standards relevant for C. elegans and specifically investigated the strengths of CE separation. Furthermore, we employed CE-MS as a complementary analytical approach to study polar metabolites in C. elegans samples, particularly in the context of longevity, in order to address a different part of its metabolome.
    METHODS: We analyzed 60 reference standards as well as metabolite extracts from C. elegans daf-2 loss-of-function mutants and wild-type (WT) samples using HILIC-MS and CE-MS employing a Q-ToF-MS instrument.
    RESULTS: CE separations showed narrower peak widths and a better linearity of the estimated response function across different concentrations which is linked to less saturation of the MS signals. Additionally, CE exhibited a distinct selectivity in the separation of compounds compared to HILIC-MS, providing complementary information for the analysis of the target compounds. Analysis of C. elegans metabolites of daf-2 mutants and WT samples revealed significant alterations in shared metabolites identified through HILIC-MS, as well as the presence of distinct metabolites.
    CONCLUSIONS: CE-MS was successfully applied in C. elegans metabolomics, being able to recover known as well as identify novel putative biomarkers of longevity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    营养可用性调节秀丽隐杆线虫的生命周期以及线粒体生理学。食物剥夺显着减少线粒体基因组(mtDNA)数量并导致与衰老相关的表型。在这里,我们显示bZIP(碱性亮氨酸拉链)蛋白ATFS-1,线粒体未折叠蛋白反应(UPRmt)的介质,需要在长期饥饿后促进生长并建立起功能性种系。我们发现,饥饿后mtDNA拷贝数的恢复和发育需要线粒体定位的ATFS-1,而不是其核转录活性。我们还发现胰岛素样受体DAF-2在ATFS-1的上游起作用以调节mtDNA含量。我们表明,降低DAF-2活性抑制ATFS-1核功能,同时导致mtDNA含量增加,部分由线粒体定位的ATFS-1介导。我们的数据表明UPRmt在恢复线粒体质量方面的重要性,并表明依赖atfs-1的mtDNA复制先于饥饿后的线粒体网络扩展。
    Nutrient availability regulates the C. elegans life cycle as well as mitochondrial physiology. Food deprivation significantly reduces mitochondrial genome (mtDNA) numbers and leads to aging-related phenotypes. Here we show that the bZIP (basic leucine zipper) protein ATFS-1, a mediator of the mitochondrial unfolded protein response (UPRmt), is required to promote growth and establish a functional germline after prolonged starvation. We find that recovery of mtDNA copy numbers and development after starvation requires mitochondrion-localized ATFS-1 but not its nuclear transcription activity. We also find that the insulin-like receptor DAF-2 functions upstream of ATFS-1 to modulate mtDNA content. We show that reducing DAF-2 activity represses ATFS-1 nuclear function while causing an increase in mtDNA content, partly mediated by mitochondrion-localized ATFS-1. Our data indicate the importance of the UPRmt in recovering mitochondrial mass and suggest that atfs-1-dependent mtDNA replication precedes mitochondrial network expansion after starvation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号