Cytoplasmic dynein

细胞质动力蛋白
  • 文章类型: Journal Article
    轴突动力蛋白是能动纤毛的驱动力,而细胞质动力蛋白在负端定向的细胞内运输中起着至关重要的作用。它们的分子结构对于理解纤毛跳动和货物运输的分子机制是必不可少的。在对细胞质动力蛋白进行一些初步结构分析后,用基因工程更容易操纵,使用X射线晶体学和单粒子低温电子显微镜,已经发表了许多轴突动力蛋白的原子和伪原子结构分析。目前,动力冲程后构象中的动力蛋白的几种结构以及动力冲程前构象中的几种结构是可用的。值得系统地比较不同来源和不同状态下动力蛋白的构象,了解它们在生物学功能中的作用。在这次审查中,我们将概述已发表的细胞质和轴突动力蛋白的高和中分辨率结构,比较其核心运动结构域的高分辨率结构和各种核苷酸状态下的整体尾部构象,并讨论了它们的力产生机理。
    Axonemal dyneins are the driving force of motile cilia, while cytoplasmic dyneins play an essential role in minus-end oriented intracellular transport. Their molecular structure is indispensable for an understanding of the molecular mechanism of ciliary beating and cargo transport. After some initial structural analysis of cytoplasmic dyneins, which are easier to manipulate with genetic engineering, using X-ray crystallography and single-particle cryo-electron microscopy, a number of atomic and pseudo-atomic structural analyses of axonemal dyneins have been published. Currently, several structures of dyneins in the post-power stroke conformation as well as a few structures in the pre-power stroke conformation are available. It will be worth systematically comparing conformations of dynein motor proteins from different sources and at different states, to understand their role in biological function. In this review, we will overview published high- and intermediate-resolution structures of cytoplasmic and axonemal dyneins, compare the high-resolution structures of their core motor domains and overall tail conformations at various nucleotide states, and discuss their force generation mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    听力损失和周围神经病变是遗传和表型异质性的两个临床实体,有时同时发生。使用外显子组测序和靶向分离分析,我们调查了一个大的阿什肯纳齐犹太家庭中周围神经病变和听力损失的遗传病因.此外,我们通过来自受影响个体和未受影响对照的成纤维细胞的裂解物的蛋白质印迹法评估了候选蛋白的产生.排除与听力损失和周围神经病变相关的已知疾病基因中的致病变异。BICD1基因中的纯合移码变体,c.1683dup(p.(Arg562Thrfs*18)),在先证者中发现,并与家庭中的听力损失和周围神经病变隔离。来自患者成纤维细胞的BIDClRNA分析显示与对照相比基因转录物的适度减少。相比之下,在纯合c.1683dup个体的成纤维细胞中无法检测到蛋白质,而在未受影响的个体中检测到BICD1。我们的发现表明,BICD1的双等位基因功能丧失变异与听力损失和周围神经病变有关。BICD1中的双等位基因功能丧失变体导致周围神经病变和听力丧失的明确证据将需要鉴定具有相同表型的相似变体的其他家庭和个体。
    Hearing loss and peripheral neuropathy are two clinical entities that are genetically and phenotypically heterogeneous and sometimes co-occurring. Using exome sequencing and targeted segregation analysis, we investigated the genetic etiology of peripheral neuropathy and hearing loss in a large Ashkenazi Jewish family. Moreover, we assessed the production of the candidate protein via western blotting of lysates from fibroblasts from an affected individual and an unaffected control. Pathogenic variants in known disease genes associated with hearing loss and peripheral neuropathy were excluded. A homozygous frameshift variant in the BICD1 gene, c.1683dup (p.(Arg562Thrfs*18)), was identified in the proband and segregated with hearing loss and peripheral neuropathy in the family. The BIDC1 RNA analysis from patient fibroblasts showed a modest reduction in gene transcripts compared to the controls. In contrast, protein could not be detected in fibroblasts from a homozygous c.1683dup individual, whereas BICD1 was detected in an unaffected individual. Our findings indicate that bi-allelic loss-of-function variants in BICD1 are associated with hearing loss and peripheral neuropathy. Definitive evidence that bi-allelic loss-of-function variants in BICD1 cause peripheral neuropathy and hearing loss will require the identification of other families and individuals with similar variants with the same phenotype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    LRRK2基因的功能增益突变导致帕金森病(PD),通过过度活跃的激酶活性增加RABGTP酶的磷酸化。我们发现LRRK2-过度磷酸化的RAB通过扰乱细胞质动力蛋白和驱动蛋白的协调调节来破坏自噬体的轴突运输。在iPSC衍生的人类神经元中,强烈过度活跃的LRRK2-p的敲入。R1441H突变导致自噬体运输的惊人损伤,引起频繁的方向反转和停顿。敲除相反的蛋白磷酸酶1H(PPM1H)表型复制了过度活跃的LRRK2的作用。ADP核糖基化因子6(ARF6)的过表达,一种GTP酶,作为选择性激活动力蛋白或驱动蛋白的开关,减弱p.R1441H敲入和PPM1H敲除神经元的运输缺陷。一起,这些发现支持了一个模型,其中LRRK2-高磷酸化RAB和ARF6之间的调节失衡诱导动力蛋白和驱动蛋白之间的非生产性“拔河”,干扰进行性自噬体运输。这种破坏可能通过损害轴突自噬的基本稳态功能而导致PD发病机理。
    Gain-of-function mutations in the LRRK2 gene cause Parkinson\'s disease (PD), increasing phosphorylation of RAB GTPases through hyperactive kinase activity. We find that LRRK2-hyperphosphorylated RABs disrupt the axonal transport of autophagosomes by perturbing the coordinated regulation of cytoplasmic dynein and kinesin. In iPSC-derived human neurons, knockin of the strongly hyperactive LRRK2-p.R1441H mutation causes striking impairments in autophagosome transport, inducing frequent directional reversals and pauses. Knockout of the opposing protein phosphatase 1H (PPM1H) phenocopies the effect of hyperactive LRRK2. Overexpression of ADP-ribosylation factor 6 (ARF6), a GTPase that acts as a switch for selective activation of dynein or kinesin, attenuates transport defects in both p.R1441H knockin and PPM1H knockout neurons. Together, these findings support a model where a regulatory imbalance between LRRK2-hyperphosphorylated RABs and ARF6 induces an unproductive \"tug-of-war\" between dynein and kinesin, disrupting processive autophagosome transport. This disruption may contribute to PD pathogenesis by impairing the essential homeostatic functions of axonal autophagy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    在有丝分裂期间,多种微管导向的活动集中在染色体上,以确保它们准确分布到子细胞。这些活动包括位于动核的耦合器和动力学调节器,建立在着丝粒染色质上的专用微管接口,以及募集到动体和有丝分裂染色质的运动蛋白。这里,我们描述了一种体内重建方法,其中将去除主要微管导向活性对有丝分裂染色体的影响与个体活性的选择性存在进行了比较。这种方法揭示了动核动力蛋白模块,由负端定向的运动型细胞质动力蛋白及其运动细胞特异性适配器组成,足以使染色体生物定向并在微管附着后重塑外部动粒组成;相比之下,动粒动力蛋白模块无法支持染色体拥塞。动粒动力蛋白的染色体自主作用,在染色体上没有其他主要微管导向因子的情况下,旋转并定向相当大比例的染色体,使它们的姐妹染色单体附着在相对的纺锤体极上。在具有定向的紧密耦合中,动粒动力蛋白模块驱动最外层动粒组分的移除,包括动力装置电机本身和主轴检查点活化剂。去除与其他主要的微管定向活性和动粒定位的蛋白磷酸酶1无关,这表明它是动粒动力蛋白模块固有的。这些观察结果表明,动粒动力蛋白模块具有协调染色体双向取向与外部动粒的附着状态敏感性重塑的能力,这有助于细胞周期的进展。
    Multiple microtubule-directed activities concentrate on chromosomes during mitosis to ensure their accurate distribution to daughter cells. These activities include couplers and dynamics regulators localized at the kinetochore, the specialized microtubule interface built on centromeric chromatin, as well as motor proteins recruited to kinetochores and to mitotic chromatin. Here, we describe an in vivo reconstruction approach in which the effect of removing the major microtubule-directed activities on mitotic chromosomes is compared to the selective presence of individual activities. This approach revealed that the kinetochore dynein module, comprised of the minus end-directed motor cytoplasmic dynein and its kinetochore-specific adapters, is sufficient to biorient chromosomes and to remodel outer kinetochore composition following microtubule attachment; by contrast, the kinetochore dynein module is unable to support chromosome congression. The chromosome-autonomous action of kinetochore dynein, in the absence of the other major microtubule-directed factors on chromosomes, rotates and orients a substantial proportion of chromosomes such that their sister chromatids attach to opposite spindle poles. In tight coupling with orientation, the kinetochore dynein module drives removal of outermost kinetochore components, including the dynein motor itself and spindle checkpoint activators. The removal is independent of the other major microtubule-directed activities and kinetochore-localized protein phosphatase 1, suggesting that it is intrinsic to the kinetochore dynein module. These observations indicate that the kinetochore dynein module has the ability coordinate chromosome biorientation with attachment state-sensitive remodeling of the outer kinetochore that facilitates cell cycle progression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    裂变酵母经历减数分裂前的核振荡,它依赖于微管,由胞质动力蛋白驱动。尽管已经分析了分子机制,尽管微管的动态行为,但如何产生鲁棒的振荡尚未阐明。这里,我们表明,振荡表现出细胞长度相关的频率,并需要微管和粘性阻力之间的平衡,以及适当的微管动力学。在活细胞中观察到的振荡与基于微管动态不稳定性的模拟模型的比较表明,振荡的周期与细胞长度相关。减小货物大小的遗传改变表明核运动取决于粘性阻力。缺失编码Kinesin-8的基因会抑制细胞皮层的微管突变,并导致振荡的扰动,表明核运动也取决于微管动态不稳定性。我们的发现将模拟模型的数值参数与产生振荡所需的细胞功能联系起来,并为理解依赖微管的核运动的物理性质提供了基础。
    Fission yeast undergoes premeiotic nuclear oscillation, which is dependent on microtubules and is driven by cytoplasmic dynein. Although the molecular mechanisms have been analyzed, how a robust oscillation is generated despite the dynamic behaviors of microtubules has yet to be elucidated. Here, we show that the oscillation exhibits cell length-dependent frequency and requires a balance between microtubule and viscous drag forces, as well as proper microtubule dynamics. Comparison of the oscillations observed in living cells with a simulation model based on microtubule dynamic instability reveals that the period of oscillation correlates with cell length. Genetic alterations that reduce cargo size suggest that the nuclear movement depends on viscous drag forces. Deletion of a gene encoding Kinesin-8 inhibits microtubule catastrophe at the cell cortex and results in perturbation of oscillation, indicating that nuclear movement also depends on microtubule dynamic instability. Our findings link numerical parameters from the simulation model with cellular functions required for generating the oscillation and provide a basis for understanding the physical properties of microtubule-dependent nuclear movements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞质动力蛋白,最大和最复杂的细胞骨架运动蛋白,为许多细胞内货物向微管(MT)的负端移动提供动力。尽管它在真核细胞中起着重要作用,动力蛋白的分子机制,其亚基和辅助蛋白的调节功能,人类疾病突变对动力蛋白力产生的影响仍不清楚。最近的工作结合诱变,单分子荧光,和基于光学镊子的力测量为动力蛋白的多个AAAATPase结构域如何调节动力蛋白对MT的附着提供了有价值的见解。这里,我们描述了力依赖性动力蛋白-MT脱离率测量的详细方案.我们为尾部截短的单头酿酒酵母动力蛋白的表达和纯化提供了更新和优化的方案,对于极性标记的MT聚合,以及将MT非共价连接到覆盖玻璃表面,以测量动力蛋白-MT分离力。
    Cytoplasmic dynein, the largest and most intricate cytoskeletal motor protein, powers the movement of numerous intracellular cargos toward the minus ends of microtubules (MT). Despite its essential roles in eukaryotic cells, dynein\'s molecular mechanism, the regulatory functions of its subunits and accessory proteins, and the consequences of human disease mutations on dynein force generation remain largely unclear. Recent work combining mutagenesis, single-molecule fluorescence, and optical tweezers-based force measurement have provided valuable insights into how dynein\'s multiple AAA+ ATPase domains regulate dynein\'s attachment to MTs. Here, we describe detailed protocols for the measurements of the force-dependent dynein-MT detachment rates. We provide updated and optimized protocols for the expression and purification of a tail-truncated single-headed Saccharomyces cerevisiae dynein, for polarity-marked MT polymerization, and for the non-covalent attachment of MTs to cover glass surfaces for the measurement of dynein-MT detachment forces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    动力蛋白和驱动蛋白是参与运输细胞货物和病毒的细胞骨架运动蛋白。在整个病毒感染过程中,它们在进入细胞期间积极参与病毒的生命周期,基因组复制,和离开。通过他们的逆行和顺行运输,动力蛋白和驱动蛋白有助于促进病毒感染以及细胞防御反应。这篇综述强调了驱动蛋白和动力蛋白在促进病毒增殖中的关键作用,并旨在将这些蛋白作为药物发现的重要靶标,探索调节其双重功能的策略,涉及病毒感染和宿主细胞免疫反应的各个基本阶段。
    Dynein and kinesin are cytoskeletal motor proteins involved in transporting cellular cargos and viruses. Throughout viral infection, they actively participate in the virus life cycle in the cell during entry, genome replication, and departure. Through their retrograde and anterograde transport, dynein and kinesin assist in promoting viral infection as well as the cellular defense response. This review highlights the crucial roles kinesin and dynein play in facilitating viral proliferation and aims to exhibit these proteins as vital targets for drug discovery in exploring strategies for regulating their dual functions concerning involvements in various essential phases of viral infections and host cells\' immune response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在神经元迁移过程中,细胞质动力蛋白yank在微管上产生的力从中心体延伸到引导过程,并沿着在中心体后面延伸的微管移动细胞核。脚手架,比如放射状胶质,引导神经元从脑室向外迁移,但是对于确保soma沿着其适当路径迁移而不是向后移动或偏离路径的内部机制知之甚少。在这里,我们报告了KIFC1的消耗,一种称为HSET的负端定向驱动蛋白,导致神经元迁移到适当的路径,这表明这种分子马达是确保迁移轨迹保真度的原因。对于这些研究,我们在体外使用大鼠游走神经元,在体内使用小鼠大脑发育,以及KIFC1突变形式的RNA干扰和异位表达。我们发现,通过KIFC1将微管交联成非滑动模式对于动力蛋白驱动力实现足够的牵引力以向前推动体细胞是必需的。由KIFC1驱动的微管滑动的不对称回合,从而使体向一个方向或另一个方向倾斜,从而提供中间校正,使神经元保持在其适当的轨迹上。KIFC1驱动的微管滑动通过允许细胞核在移动时定向旋转,进一步帮助神经元保持在其适当的路径上。这与我们发现KIFC1在神经元发育的早期阶段有助于动力间核迁移的方式一致。重要声明解决神经元迁移的机制在医学上很重要,因为许多大脑发育障碍涉及神经元迁移的缺陷,并且因为新生神经元的部署在成年人中对于认知和记忆可能很重要。抑制KIFC1的药物是化疗的候选药物,因此如果允许它们进入大脑,应谨慎使用。
    During neuronal migration, forces generated by cytoplasmic dynein yank on microtubules extending from the centrosome into the leading process and move the nucleus along microtubules that extend behind the centrosome. Scaffolds, such as radial glia, guide neuronal migration outward from the ventricles, but little is known about the internal machinery that ensures that the soma migrates along its proper path rather than moving backward or off the path. Here we report that depletion of KIFC1, a minus-end-directed kinesin called HSET in humans, causes neurons to migrate off their appropriate path, suggesting that this molecular motor is what ensures fidelity of the trajectory of migration. For these studies, we used rat migratory neurons in vitro and developing mouse brain in vivo, together with RNA interference and ectopic expression of mutant forms of KIFC1. We found that crosslinking of microtubules into a nonsliding mode by KIFC1 is necessary for dynein-driven forces to achieve sufficient traction to thrust the soma forward. Asymmetric bouts of microtubule sliding driven by KIFC1 thereby enable the soma to tilt in one direction or another, thus providing midcourse corrections that keep the neuron on its appropriate trajectory. KIFC1-driven sliding of microtubules further assists neurons in remaining on their appropriate path by allowing the nucleus to rotate directionally as it moves, which is consistent with how we found that KIFC1 contributes to interkinetic nuclear migration at an earlier stage of neuronal development.SIGNIFICANCE STATEMENT Resolving the mechanisms of neuronal migration is medically important because many developmental disorders of the brain involve flaws in neuronal migration and because deployment of newly born neurons may be important in the adult for cognition and memory. Drugs that inhibit KIFC1 are candidates for chemotherapy and therefore should be used with caution if they are allowed to enter the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞骨架组织和溶酶体分泌在破骨细胞生成和骨吸收中起重要作用。胞质动力蛋白是一种分子马达复合物,可调节微管动力学和货物/细胞器的运输,包括沿着微管的溶酶体。LIS1、NDE1和NDEL1属于调节动力蛋白功能的进化保守途径。破骨细胞前体中细胞质动力蛋白复合物的破坏和LIS1的缺失阻止了破骨细胞的生成。尽管如此,NDE1和NDEL1在破骨细胞生物学中的作用仍然难以捉摸。在这项研究中,我们发现,通过慢病毒转导特异性shRNAs敲低Nde1表达,在体外通过减弱增殖显著抑制破骨细胞生成,生存,通过抑制M-CSF和RANKL下游的信号通路以及破骨细胞分化转录因子NFATc1来实现破骨细胞前体细胞的分化。为了剖析NDEL1如何调节破骨细胞和骨稳态,我们通过在C57BL/6J背景下将Ndel1-floxed小鼠与LysM-Cre小鼠杂交,在髓样破骨细胞前体(Ndel1ΔlysM)中产生了Ndel1条件性敲除小鼠。Ndel1ΔlysM小鼠发育正常。股骨远端和体外破骨细胞分化的µCT分析以及培养物中的功能测定揭示了小梁和皮质骨隔室中相似的骨量以及完整的破骨细胞形成。细胞骨架组织,Ndel1ΔlysM小鼠和培养物中的骨吸收。因此,我们的研究结果揭示了NDE1在破骨细胞形成调节中的新作用,并证明NDEL1对破骨细胞的分化和功能是不必要的。
    Cytoskeleton organization and lysosome secretion play an essential role in osteoclastogenesis and bone resorption. The cytoplasmic dynein is a molecular motor complex that regulates microtubule dynamics and transportation of cargos/organelles, including lysosomes along the microtubules. LIS1, NDE1, and NDEL1 belong to an evolutionary conserved pathway that regulates dynein functions. Disruption of the cytoplasmic dynein complex and deletion of LIS1 in osteoclast precursors arrest osteoclastogenesis. Nonetheless, the role of NDE1 and NDEL1 in osteoclast biology remains elusive. In this study, we found that knocking-down Nde1 expression by lentiviral transduction of specific shRNAs markedly inhibited osteoclastogenesis in vitro by attenuating the proliferation, survival, and differentiation of osteoclast precursor cells via suppression of signaling pathways downstream of M-CSF and RANKL as well as osteoclast differentiation transcription factor NFATc1. To dissect how NDEL1 regulates osteoclasts and bone homeostasis, we generated Ndel1 conditional knockout mice in myeloid osteoclast precursors (Ndel1ΔlysM) by crossing Ndel1-floxed mice with LysM-Cre mice on C57BL/6J background. The Ndel1ΔlysM mice developed normally. The µCT analysis of distal femurs and in vitro osteoclast differentiation and functional assays in cultures unveiled the similar bone mass in both trabecular and cortical bone compartments as well as intact osteoclastogenesis, cytoskeleton organization, and bone resorption in Ndel1ΔlysM mice and cultures. Therefore, our results reveal a novel role of NDE1 in regulation of osteoclastogenesis and demonstrate that NDEL1 is dispensable for osteoclast differentiation and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在动物细胞中,单个细胞质动力蛋白运动介导微管负末端定向运输,平衡几十个正端定向驱动蛋白。动力蛋白与不同货物谱相互作用的显着能力源于其严格调节的货物特异性衔接蛋白的募集,它参与动态蛋白复合物,形成三方推进运动。衔接子结合受同源动力蛋白轻中间链亚基LIC1(DYNC1LI1)和LIC2(DYNC1LI2)控制,它们存在于可以执行独特和重叠功能的相互排斥的动力蛋白复合物中。LIC的固有无序和可变的C末端结构域对于接合各种结构上不同的衔接子是必不可少的。这里,我们假设LIC翻译后修饰的许多时空调控排列,以及适配器和货物,成倍扩展动力蛋白-适配器-货物复合物的光谱。我们以主题方式说明了可能产生支持多种动力蛋白功能所需的大量生化变异的可能性。
    In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号