Cytokinesis-blocked micronucleus assay

  • 文章类型: Journal Article
    遗传毒性是人类生物监测计划中应包括的重要信息。然而,通常应用的细胞遗传学测定是费力和耗时的,发展快速经济的新方法至关重要的原因。这项研究的目的是评估冷冻全血的分子谱,傅里叶变换红外(FTIR)光谱,允许评估职业性接触抗肿瘤药物的遗传毒性,通过胞质分裂阻滞微核试验获得。为此,研究了92个外周血样本:来自职业暴露于抗肿瘤药物的医院专业人员的46个样本和来自学术界未暴露的46个样本(对照)。首先通过将大分子甲醇沉淀为血红蛋白来评估冷冻全血的代谢组,然后离心。代谢组分子谱导致3个光谱带比率,暴露组和非暴露组之间存在显着差异(p<0.01),并且光谱主成分线性判别分析(PCA-LDA)模型能够以73%的准确度预测暴露的遗传毒性。在优化稀释度和使用的溶液后,有可能获得更多的光谱带显著比率,即,10个比率显著不同(p<0.001),突出了该方法的高灵敏度和特异性。的确,PCA-LDA模型,根据全血的分子特征,能够准确预测暴露的遗传毒性,灵敏度,和92%的特异性,93%和91%,分别。所有这些参数都是基于1μL冷冻全血获得的,在高吞吐量模式下,即,基于对92个样本的同时分析,以简单经济的方式。总之,可以得出结论,这种方法对于高维筛查遗传毒性物质的暴露具有非常有希望的潜力。
    Genotoxicity is an important information that should be included in human biomonitoring programmes. However, the usually applied cytogenetic assays are laborious and time-consuming, reason why it is critical to develop rapid and economic new methods. The aim of this study was to evaluate if the molecular profile of frozen whole blood, acquired by Fourier Transform Infrared (FTIR) spectroscopy, allows to assess genotoxicity in occupational exposure to antineoplastic drugs, as obtained by the cytokinesis-block micronucleus assay. For that purpose, 92 samples of peripheral blood were studied: 46 samples from hospital professionals occupationally exposed to antineoplastic drugs and 46 samples from workers in academia without exposure (controls). It was first evaluated the metabolome from frozen whole blood by methanol precipitation of macromolecules as haemoglobin, followed by centrifugation. The metabolome molecular profile resulted in 3 ratios of spectral bands, significantly different between the exposed and non-exposed group (p < 0.01) and a spectral principal component-linear discriminant analysis (PCA-LDA) model enabling to predict genotoxicity from exposure with 73 % accuracy. After optimization of the dilution degree and solution used, it was possible to obtain a higher number of significant ratios of spectral bands, i.e., 10 ratios significantly different (p < 0.001), highlighting the high sensitivity and specificity of the method. Indeed, the PCA-LDA model, based on the molecular profile of whole blood, enabled to predict genotoxicity from the exposure with an accuracy, sensitivity, and specificity of 92 %, 93 % and 91 %, respectively. All these parameters were achieved based on 1 μL of frozen whole blood, in a high-throughput mode, i.e., based on the simultaneous analysis of 92 samples, in a simple and economic mode. In summary, it can be conclude that this method presents a very promising potential for high-dimension screening of exposure to genotoxic substances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Elevated Homocysteine (Hcy) is associated with increased risk of vascular disease, but whether it induces genotoxicity to vascular endothelial cells remains unknown. Here, we conducted a comprehensive study of the genotoxicity, and unexpected anti-genotoxicity, of Hcy by cytokinesis-blocked micronucleus assay in HUVECs and erythrocyte micronucleus test in mouse bone marrow cells. Our experiments led to several important findings. First, while supraphysiological Hcy (SP-Hcy) exhibited remarkable genotoxicity, physiologically-relevant Hcy (PR-Hcy) reduced the basal genotoxicity. Second, among the metabolites of Hcy, cysteine phenocopied the anti-genotoxicity of PR-Hcy and, methionine, S-adenosylhomocysteine and H2S phenocopied the genotoxicity of SP-Hcy. Third, the genotoxicity of SP-Hcy was mitigated by vitamin B6, Fe2+ and Cu2+, but was exacerbated by N-acetylcysteine. Fourth, under pre-, co- or post-treatment protocol, both SP-Hcy and PR-Hcy attenuated the genotoxicity of cisplatin, mitomycin-C, nocodazole or deoxycholate. Finally, 100 and 250 mg/kg Hcy ameliorated cisplatin-induced genotoxicity in bone marrow cells of CF-1 and Kunming mice. Our results suggest that genotoxicity may be one mechanism through which Hcy confers an increased risk for vascular disease, but more importantly, they challenge the long-standing paradigm that Hcy is always harmful to human health. Our study calls for a more systematic effort in understanding the molecular mechanisms underlying the anti-genotoxicity of Hcy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Small cell lung cancer (SCLC) is a highly aggressive form of lung cancer. There is an urgent need to develop tools to identify individuals at high risk of developing SCLC. We have previously reported that the cytokinesis-blocked micronucleus (CBMN) assay is a strong predictor of non-small cell lung cancer (NSCLC). Here, we investigate the sensitivity of the CBMN endpoints as predictors of SCLC risk. We conducted the CBMN assay on SCLC patients (n = 216), NSCLC patients (n = 173), and healthy controls (n = 204). Per sample, 1,000 binucleated cells (BN) were scored, and 3 endpoints, micronuclei (BN-MN), nucleoplasmic bridges (BN-NPB), and nuclear buds(BN-BUD), were recorded. Spectral karyotyping was also conducted on SCLC patients (n = 116) and NSCLC patients (n = 137) to identify genomic regions unique to each disease. Significantly higher levels of CBMN endpoints were observed in both cancer groups compared to controls. BN-NPBs were significantly higher among SCLC patients compared to NSCLC patients (p < 0.001). Chromosomes 5 and 17 were associated with BN-MN, and chromosomes 5, 18, 20, and 22 were associated with BN-NPBs in SCLC patients. Given the high frequency of chromosome aberrations observed in SCLC, events such as reinsertion of the micronucleus and chromothripsis may be potential mechanisms for the genetic instability in these patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Indigofera suffruticosa Miller (Fabaceae) and I. truxillensis Kunth produce compounds, such as isatin (ISA) and indirubin (IRN), which possess antitumour properties. Their effects in mammalian cells are still not very well understood.
    OBJECTIVE: We evaluated the activities of ISA and/or IRN on cell viability and apoptosis in vitro, their genotoxic potentials in vitro and in vivo, and the IRN- and ISA-induced expression of ERCC1 or BAX genes.
    METHODS: HeLa and/or CHO-K1 cell lines were tested (3 or 24 h) in the MTT, Trypan blue exclusion, acridine orange/ethidium bromide, cytokinesis-blocked micronucleus (CBMN) and comet (36, 24 and 72 h) tests after treatment with IRN (0.1 to 200 μM) or ISA (0.5 to 50 μM). Gene expression was measured by RT-qPCR in HeLa cells. Swiss albino mice received IRN (3, 4 or 24 h) by gavage (50, 100 and 150 mg/kg determined from the LD50 - 1 g/kg b.w.) and submitted to comet assay in vivo.
    RESULTS: IRN reduced the viability of CHO-K1 (24 h; 5 to 200 μM) and HeLa cells (10 to 200 μM), and was antiproliferative in the CBMN test (CHO-K1: 0.5 to 10 μM; HeLa: 5 and 10 μM). The drug did not induce apoptosis, micronucleus neither altered gene expression. IRN and ISA were genotoxic for HeLa cells (3 and 24 h) at all doses tested. IRN (100 and 150 mg/kg) also induced genotoxicity in vivo (4 h).
    CONCLUSIONS: IRN and ISA have properties that make them candidates as chemotherapeutics for further pharmacological investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    继世界上最大的核事故之一之后,发生在福岛,2011年,日本的一项重大科学努力集中在最大限度地减少辐射暴露对健康的潜在不利影响。使用天然饮食抗氧化剂来降低辐射诱导的氧化DNA损伤的风险是一种简单的策略,可以最大程度地减少与辐射相关的癌症发病率并改善整体健康状况。洋葱是膳食类黄酮的最丰富来源之一,是增加其总摄入量的重要食物。因此,我们检查了洋葱提取物对博来霉素(BLM)处理的人淋巴细胞的细胞和基因毒性的影响,一种放射模拟剂.此外,我们使用胞质分裂阻断的微核测定法和单细胞凝胶电泳测定法测量了BLM治疗后的微核(MN)和DNA损伤的频率。与单独用BLM处理的细胞相比,我们观察到用洋葱提取物然后暴露于BLM处理的淋巴细胞中细胞活力的显著增加。BLM诱导的MN和DNA损伤的频率以剂量依赖的方式增加;然而,当淋巴细胞用洋葱提取物(10和20μL/mL)预处理时,在所有剂量的BLM下,BLM诱导的MN的频率均降低,而在3μg/mL的BLM下,DNA损伤也降低。这些结果表明,洋葱提取物可能对BLM诱导的人淋巴细胞的细胞和遗传毒性具有保护作用。
    Following one of the world\'s largest nuclear accidents, occured at Fukushima, Japan in 2011, a significant scientific effort has focused on minimizing the potential adverse health effects due to radiation exposure. The use of natural dietary antioxidants to reduce the risk of radiation-induced oxidative DNA damage is a simple strategy for minimizing radiation-related cancer rates and improving overall health. The onion is among the richest sources of dietary flavonoids and is an important food for increasing their overall intake. Therefore, we examined the effect of an onion extract on cyto- and geno-toxicity in human lymphocytes treated with bleomycin (BLM), a radiomimetic agent. In addition, we measured the frequency of micronuclei (MN) and DNA damage following treatment with BLM using a cytokinesis-blocked micronucleus assay and a single cell gel electrophoresis assay. We observed a significant increase in cell viability in lymphocytes treated with onion extract then exposed to BLM compared to cells treated with BLM alone. The frequency of BLM induced MN and DNA damage increased in a dose-dependent manner; however, when lymphocytes were pretreated with onion extract (10 and 20 μL/mL), the frequency of BLM-induced MN was decreased at all doses of BLM and DNA damage was decreased at 3 μg/mL of BLM. These results suggest that onion extract may have protective effects against BLM-induced cyto- and genotoxicity in human lymphocytes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties. Primary human dermal fibroblasts were exposed to environmentally relevant doses of nano-CeO2 (mean diameter, 7 nm; dose range, 6 × 10(-5)-6 × 10(-3) g/l corresponding to a concentration range of 0.22-22 µM) and DNA damages at the chromosome level were evaluated by genetic toxicology tests and compared to that induced in cells exposed to micro-CeO2 particles (mean diameter, 320 nm) under the same conditions. For this purpose, cytokinesis-blocked micronucleus assay in association with immunofluorescence staining of centromere protein A in micronuclei were used to distinguish between induction of structural or numerical chromosome changes (i.e. clastogenicity or aneuploidy). The results provide the first evidence of a genotoxic effect of nano-CeO2, (while not significant with micro-CeO2) by a clastogenic mechanism. The implication of oxidative mechanisms in this genotoxic effect was investigated by (i) assessing the impact of catalase, a hydrogen peroxide inhibitor, and (ii) by measuring lipid peroxidation and glutathione status and their reversal by application of N-acetylcysteine, a precusor of glutathione synthesis in cells. The data are consistent with the implication of free radical-related mechanisms in the nano-CeO2-induced clastogenic effect, that can be modulated by inhibition of cellular hydrogen peroxide release.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号