Cyclin

细胞周期蛋白
  • 文章类型: Journal Article
    为了确保体细胞分裂过程中染色体的均匀分离,真核生物依赖于有丝分裂纺锤体。这里,我们测量了拟南芥有丝分裂纺锤体的主要特征,并使用Cytosim建立了三维动力学模型。我们鉴定了细胞周期调节因子细胞周期依赖激酶B1(CDKB1)及其细胞周期蛋白伴侣CYCB3;1作为拟南芥纺锤体形态的关键调节因子。我们发现augmin成分ENDOSPERMDEFECTIVE1(EDE1)是CDKB1的底物;1-CYCB3;1复合物。ede1的非磷酸化突变体拯救类似于cycb3的纺锤体表型;1和cdkb1突变体,该蛋白与纺锤体微管的关联效率较低。因此,在模拟中降低augmin的水平概括了在突变体中观察到的表型。我们的发现强调了植物细胞中有丝分裂纺锤体的细胞周期依赖性磷酸化控制的重要性,并支持了我们的模型作为探索控制真核纺锤体组织的机制的框架的有效性。
    To ensure an even segregation of chromosomes during somatic cell division, eukaryotes rely on mitotic spindles. Here, we measured prime characteristics of the Arabidopsis mitotic spindle and built a three-dimensional dynamic model using Cytosim. We identified the cell-cycle regulator CYCLIN-DEPENDENT KINASE B1 (CDKB1) together with its cyclin partner CYCB3;1 as key regulators of spindle morphology in Arabidopsis. We found that the augmin component ENDOSPERM DEFECTIVE1 (EDE1) is a substrate of the CDKB1;1-CYCB3;1 complex. A non-phosphorylatable mutant rescue of ede1 resembled the spindle phenotypes of cycb3;1 and cdkb1 mutants and the protein associated less efficiently with spindle microtubules. Accordingly, reducing the level of augmin in simulations recapitulated the phenotypes observed in the mutants. Our findings emphasize the importance of cell-cycle-dependent phospho-control of the mitotic spindle in plant cells and support the validity of our model as a framework for the exploration of mechanisms controlling the organization of the eukaryotic spindle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞周期蛋白和细胞周期蛋白依赖性激酶(CDKs)定位于中心体,但它们在细胞周期中的意义尚不清楚。最近,Robertsetal.揭示了中心体细胞周期蛋白B-CDK是有丝分裂进入和底物磷酸化所必需的。这表明中心体充当控制细胞周期的信号中枢。
    Cyclins and cyclin-dependent kinases (CDKs) localize to the centrosome, but their significance in the cell cycle is unclear. Recently, Roberts et al. revealed that centrosomal cyclin B-CDK is required for mitotic entry and phosphorylation of substrates. This suggests that the centrosome acts as a signaling hub controlling the cell cycle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞周期包括连续事件,在此期间细胞复制其基因组并将其分成两个子细胞。该过程受到严格调节,以确保子细胞接受相同的复制染色体DNA,并且在复制过程中DNA中的任何错误都被正确修复。细胞周期蛋白和它们的酶伙伴,细胞周期蛋白依赖性激酶(CDKs),是细胞周期期间G-到M-相转变的关键调节因子。促有丝分裂信号诱导细胞周期蛋白/CDK复合物的形成,导致CDK的磷酸化和活化。一旦激活,细胞周期蛋白/CDK复合物磷酸化驱动细胞周期向前的特定底物。细胞周期蛋白-CDK复合物的顺序活化和失活受到细胞周期蛋白诱导的活化和失活磷酸化事件的严格控制。非编码RNA(ncRNAs),不编码蛋白质,在转录和翻译水平调节细胞周期蛋白,从而控制它们在不同细胞周期阶段的表达。ncRNAs的失调可导致细胞周期调节蛋白的异常表达模式,导致细胞周期调节和癌症发展异常。这篇综述探讨了ncRNA失调如何破坏细胞分裂平衡,并讨论了靶向这些ncRNA以控制癌症治疗中细胞周期事件的潜在治疗方法。
    The cell cycle comprises sequential events during which a cell duplicates its genome and divides it into two daughter cells. This process is tightly regulated to ensure that the daughter cell receives identical copied chromosomal DNA and that any errors in the DNA during replication are correctly repaired. Cyclins and their enzyme partners, cyclin-dependent kinases (CDKs), are critical regulators of G- to M-phase transitions during the cell cycle. Mitogenic signals induce the formation of the cyclin/CDK complexes, resulting in phosphorylation and activation of the CDKs. Once activated, cyclin/CDK complexes phosphorylate specific substrates that drive the cell cycle forward. The sequential activation and inactivation of cyclin-CDK complexes are tightly controlled by activating and inactivating phosphorylation events induced by cell-cycle proteins. The non-coding RNAs (ncRNAs), which do not code for proteins, regulate cell-cycle proteins at the transcriptional and translational levels, thereby controlling their expression at different cell-cycle phases. Deregulation of ncRNAs can cause abnormal expression patterns of cell-cycle-regulating proteins, resulting in abnormalities in cell-cycle regulation and cancer development. This review explores how ncRNA dysregulation can disrupt cell division balance and discusses potential therapeutic approaches targeting these ncRNAs to control cell-cycle events in cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    减数分裂是有丝分裂细胞周期的复杂变体,因此依赖于许多参与有丝分裂的相同蛋白质,但是以新颖的方式利用这些。就像有丝分裂一样,Cdk1及其细胞周期蛋白伙伴,细胞周期蛋白A,在减数分裂的多个步骤中需要B和B3。在这里,我们研究了三种有丝分裂细胞周期蛋白的稳定形式的作用,以研究减数分裂中细胞周期蛋白降解失败的后果。我们发现稳定的CyclinB3促进整个卵的异位微管聚合,依赖于APC/C活性,显然是由于细胞周期蛋白A和细胞周期蛋白B的破坏。我们提供的数据表明CycB,可能还有CycA,还可以在减数分裂的特定阶段促进APC/C活性。我们还提供了证据,表明在减数分裂中,APC/CCort和APC/CFzy能够通过新型degron靶向细胞周期蛋白B。总的来说,我们的发现强调了三种有丝分裂的Cdk-cyclin复合物在减数分裂中的不同功能。
    Meiosis is a complex variant of the mitotic cell cycle, and as such relies on many of the same proteins involved in mitosis, but utilizes these in novel ways. As in mitosis, Cdk1 and its cyclin partners, Cyclin A, B, and B3 are required at multiple steps in meiosis. Here, we study the effect of stabilized forms of the three mitotic cyclins to study the consequences of failure to degrade the cyclins in meiosis. We find that stabilized Cyclin B3 promotes ectopic microtubule polymerization throughout the egg, dependent on APC/C activity and apparently due to the consequent destruction of Cyclin A and Cyclin B. We present data that suggests CycB, and possibly CycA, can also promote APC/C activity at specific stages of meiosis. We also present evidence that in meiosis APC/CCort and APC/CFzy are able to target Cyclin B via a novel degron. Overall, our findings highlight the distinct functions of the three mitotic Cdk-cyclin complexes in meiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Skp2,SCFSkp2泛素连接酶的底物识别成分,已牵涉到许多关键细胞周期调节剂的靶向破坏和S期的促进。其关键靶标之一是细胞周期蛋白依赖性激酶(Cdk)抑制剂p27,并且实际上Skp2在许多癌症中的过表达与p27的过早降解直接相关。Skp2首先被鉴定为在转化细胞中与细胞周期蛋白A相互作用的蛋白质,但它在这个复杂的角色仍然不清楚。在本文中,我们证明了Skp2与果蝇中的CyclinA相互作用,并且是维持CyclinA水平并允许有丝分裂进入所必需的。Skp2突变细胞中有丝分裂进入的失败导致多倍体。如果这些细胞再次进入有丝分裂,它们就不能正确地分离它们的染色体,导致检查点依赖性细胞周期停滞或凋亡。因此Skp2是有丝分裂和维持二倍体和基因组稳定性所必需的。
    Skp2, the substrate recognition component of the SCFSkp2 ubiquitin ligase, has been implicated in the targeted destruction of a number of key cell cycle regulators and the promotion of S-phase. One of its critical targets is the Cyclin dependent kinase (Cdk) inhibitor p27, and indeed the overexpression of Skp2 in a number of cancers is directly correlated with the premature degradation of p27. Skp2 was first identified as a protein that interacts with Cyclin A in transformed cells, but its role in this complex has remained unclear. In this paper, we demonstrate that Skp2 interacts with Cyclin A in Drosophila and is required to maintain Cyclin A levels and permit mitotic entry. Failure of mitotic entry in Skp2 mutant cells results in polyploidy. If these cells enter mitosis again they are unable to properly segregate their chromosomes, leading to checkpoint dependent cell cycle arrest or apoptosis. Thus, Skp2 is required for mitosis and for maintaining diploidy and genome stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sall1和Sall4,锌指转录因子,在小鼠发育的早期阶段,在第二心脏区域(SHF)的祖细胞和心肌细胞中表达。为了了解Sall1/4在心脏发育中的作用,我们通过在心脏中强制表达截短形式的Sall4(ΔSall4)来产生心脏特异性Sall1/4功能抑制小鼠。ΔSall4过表达小鼠表现出右心室和流出道发育不良,两者都来自SHF,和较薄的心室壁。我们发现,在ΔSall4过表达小鼠中,增殖性SHF祖细胞和心肌细胞的数量减少。RNA测序数据显示,Sall1/4在细胞周期蛋白依赖性激酶(CDK)/细胞周期蛋白基因和关键转录因子基因的上游起作用,以促进紧凑型心肌细胞的发育,包括心肌素(Myocd)和血清反应因子(SRF)。此外,ChIP测序和免疫共沉淀分析显示,Sall4和Myocd与SRF形成转录复合物,并直接结合CDK/细胞周期蛋白基因(CDK1和CCNB1)的上游调节区。这些结果表明,Sall1/4通过调节与Myocd/SRF相互作用的CDK/cyclin基因对心肌细胞的增殖至关重要。
    Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    雄激素非依赖性前列腺癌占世界死亡率。在这项研究中,被称为灵芝的医用真菌的各种提取物被筛选为抑制DU145细胞,雄激素非依赖性前列腺癌细胞系。结果表明,福山乙醇提取物的己烷(GF-EH)和丁醇(GF-EB)部分均以剂量依赖性方式抑制DU145细胞活力。GF-EH通过下调细胞周期蛋白E2蛋白表达诱导DU145细胞G1期细胞周期停滞。此外,GF-EB通过激活caspase3基因表达引发DU145细胞的外源性凋亡,导致细胞程序性死亡。最重要的是,与DU145细胞相比,GF-EH和GF-EB对正常人成纤维细胞的毒性较低,暗示它们对癌细胞具有特定的药物作用。本研究为Formosanum提取物作为治疗雄激素非依赖性前列腺癌的潜在成分提供了分子基础。
    Androgen-independent prostate cancer accounts for mortality in the world. In this study, various extracts of a medical fungus dubbed Ganoderma formosanum were screened for inhibition of DU145 cells, an androgen-independent prostate cancer cell line. Results demonstrated that both hexane (GF-EH) and butanol (GF-EB) fraction of G. formosanum ethanol extract inhibited DU145 cell viability in a dose-dependent manner. GF-EH induced cell-cycle arrest in G1 phase of DU145 cells via downregulation of cyclin E2 protein expression. In addition, GF-EB triggered extrinsic apoptosis of DU145 cells by activating caspase 3 gene expression resulting in programed cell death. Above all, both GF-EH and GF-EB show lower toxicity to normal human fibroblast cell line compared to DU145 cell, implying that they possess specific drug action on cancer cells. This study provides a molecular basis of G. formosanum extract as a potential ingredient for treatment of androgen-independent prostate cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无性孢子是真菌分散到新生态位的主要载体。欧洲曲霉菌构巢曲霉是研究无性发育的遗传/分子控制的主要参考。在这个物种中,Flb蛋白控制主基因brlA的表达,因此,flb(上游发育激活[UDA])基因中的功能丧失突变阻断brlA转录,因此,分生孢子的生产,带有无性孢子的结构称为分生孢子。然而,特定Flb突变体的杂种表型,例如ΔflbB菌株,在盐胁迫条件下恢复。以前,我们产生了ΔflbB的第二位点突变体的集合,这些突变体无法在补充有NaH2PO4(0.65M)的培养基上分生孢子。这里,我们鉴定了flpA中的Gly347Stop突变是FLIP57表型的原因,并鉴定了异形芽孢杆菌和烟曲霉中假定的细胞周期蛋白FlpA和C末端结构域激酶-1(CTDK-1)复合物的其余假定组分的作用.FlpA,Stk47和FlpB是及时发芽所必需的(I),(ii)在分生孢子发育过程中,从甲虫到phialides(产生分生孢子的细胞)的过渡,和(iii)在A.nidulans中发育性结构(cleistothecia)。这三种蛋白质是细胞核的,Stk47的核质定位取决于FlpA的活性,这与下拉测定中FlpA对Stk47的保留相关。总的来说,这项工作将曲霉菌的假定CTDK-1复合物与生长和发育控制联系起来。鉴定flpA中的突变作为Nidulans中分生孢子的抑制剂和FlpA的功能表征,Stk47和FlpB是形虫和烟曲霉中C末端结构域激酶复合物CTDK-1的推定成员。重要的烟曲霉已被世界卫生组织列入真菌病原体的优先名单,因为(i)它导致90%的侵袭性曲霉病病例,死亡率很高,和(ii)感染对唑类抗真菌剂的耐药性越来越强。Nidulans是一种机会性病原体和腐生菌,在过去的80年中一直用作丝状真菌的参考系统。这里,我们描述了两种曲霉中推定的转录细胞周期蛋白/激酶复合物CTDK-1在形态发生和发育中的作用。相应基因的无效突变体显示出延迟的发芽,异常分生孢子发育,和抑制cleistothecia产生。虽然在高等真核生物中,这种复合物仅由细胞周期蛋白和激酶形成,真菌复合物将包含真菌特异性第三成分,FlpB,这将使激酶(Stk47)和细胞周期蛋白(FlpA)之间的相互作用成为可能,并且可以用作抗真菌剂的靶标。
    OBJECTIVE: Aspergillus fumigatus has been included by the World Health Organization in the priority list of fungal pathogens because (i) it causes 90% of invasive aspergillosis cases, with a high mortality rate, and (ii) infections are becoming increasingly resistant to azole antifungals. A. nidulans is an opportunistic pathogen and a saprotroph which has served during the last 80 years as a reference system for filamentous fungi. Here, we characterized the role in morphogenesis and development of the putative transcriptional cyclin/kinase complex CTDK-1 in both aspergilli. The null mutants of the corresponding genes showed delayed germination, aberrant conidiophore development, and inhibition of cleistothecia production. While in higher eukaryotes this complex is formed only by a cyclin and a kinase, the fungal complex would incorporate a fungal-specific third component, FlpB, which would enable the interaction between the kinase (Stk47) and the cyclin (FlpA) and may be used as a target for antifungals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞周期是一个复杂的过程,涉及DNA复制,蛋白质表达,和细胞分裂。细胞周期的失调与各种疾病有关。细胞周期蛋白依赖性激酶(CDKs)及其相应的细胞周期蛋白是调节细胞周期的主要蛋白质。与抑制相反,一种称为蛋白水解靶向嵌合体(PROTACs)和分子胶的新方法可以消除CDK和细胞周期蛋白的酶和支架功能,实现有针对性的降解。近年来,PROTACs和分子胶领域发展迅速。在这篇文章中,我们旨在总结CDKs和细胞周期蛋白降解剂的最新进展。选择性,应用程序,验证和每个CDK降级器的当前状态将被概述。此外,讨论了为仍缺乏降解剂的CDK成员开发降解剂的可能方法。总的来说,本文全面总结了CDK和细胞周期蛋白降解剂的最新进展,这将有助于研究人员在这个主题上。
    The cell cycle is a complex process that involves DNA replication, protein expression, and cell division. Dysregulation of the cell cycle is associated with various diseases. Cyclin-dependent kinases (CDKs) and their corresponding cyclins are major proteins that regulate the cell cycle. In contrast to inhibition, a new approach called proteolysis-targeting chimeras (PROTACs) and molecular glues can eliminate both enzymatic and scaffold functions of CDKs and cyclins, achieving targeted degradation. The field of PROTACs and molecular glues has developed rapidly in recent years. In this article, we aim to summarize the latest developments of CDKs and cyclin protein degraders. The selectivity, application, validation and the current state of each CDK degrader will be overviewed. Additionally, possible methods are discussed for the development of degraders for CDK members that still lack them. Overall, this article provides a comprehensive summary of the latest advancements in CDK and cyclin protein degraders, which will be helpful for researchers working on this topic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞周期是在细胞中发生的导致其分裂和复制的一系列事件。它可以分为两个主要阶段:间期和有丝分裂。间期是细胞周期的最长阶段,可进一步分为三个阶段:G1,S,和G2。在G1期间,细胞生长并准备DNA合成。在S阶段,DNA合成发生,导致遗传物质的复制。在G2中,细胞继续生长并准备有丝分裂。有丝分裂后,细胞进入细胞周期的最后阶段,叫做胞质分裂,在细胞质分裂的过程中,产生两个独立的子细胞。然后细胞周期再次以间期开始。细胞周期失调是癌症的标志,它可能会导致癌症的发展和进展。细胞周期蛋白抑制剂和检查点激活剂在癌症治疗中显示出希望,特别是与其他疗法相结合。
    The cell cycle is the series of events that occur in a cell leading to its division and duplication. It can be divided into two main stages: interphase and mitosis. Interphase is the longest stage of the cell cycle and can be further divided into three phases: G1, S, and G2. During G1, the cell grows and prepares for DNA synthesis. In the S phase, DNA synthesis occurs, leading to the replication of the genetic material. In G2, the cell continues to grow and prepares for mitosis. After mitosis, the cell enters the final stage of the cell cycle, called cytokinesis, during which the cytoplasm is divided, resulting in two separate daughter cells. The cell cycle then begins again with interphase. Cell cycle dysregulation is a hallmark of cancer, and it can have several consequences that contribute to the development and progression of cancer. Cyclin inhibitors and checkpoint activators have shown promise in the treatment of cancer, particularly in combination with other therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号