Cortical layers

皮质层
  • 文章类型: Journal Article
    人类大脑的语言网络在额叶下皮层和上/中颞叶皮层具有核心组成部分,在大多数人的左半球占主导地位。这些新皮质区域的功能专业化和相互连通性可能反映在它们的分子和细胞谱中。皮层区域之间的兴奋连接根据层特定的模式出现并神经支配。这里,我们从核心语言网络区域的人类死后皮质组织样本中生成了一个基因表达数据集,使用空间转录组学区分皮质层的基因表达。将这些数据与现有的单细胞表达数据整合,确定了56个基因,这些基因显示了额叶和颞叶语言皮层之间的层状表达谱差异,以及II/III层和/或V/VI层兴奋性神经元的上调。根据大规模全基因组筛查的数据,这56个基因中的DNA变异显示了与左半球额叶和颞叶语言皮层之间结构连接的个体间变异的集合水平关联,以及与大脑相关的障碍阅读障碍和精神分裂症,这些障碍通常涉及受影响的语言。这些发现将层状基因表达的特定区域模式确定为大脑语言网络的特征。
    The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here, we generated a gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between the frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with interindividual variation in structural connectivity between the left-hemisphere frontal and temporal language cortex, and with the brain-related disorders dyslexia and schizophrenia which often involve affected language. These findings identify region-specific patterns of laminar gene expression as a feature of the brain\'s language network.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管哺乳动物大脑皮层最常被描述为六层结构,有皮质区域(初级运动皮质)和物种(大象,鲸目动物,和河马),在细胞结构上模糊的地方,或缺席,注意层4。丘脑皮质从核心投射,或一阶,丘脑系统主要终止于层4/内层3。我们使用囊泡谷氨酸转运蛋白2的免疫定位,探索了皮质区域和没有细胞结构上不同的层4的物种中核心丘脑皮质投射的终止位点,囊泡谷氨酸转运蛋白2是核心丘脑皮质轴突末端的已知标记,在31种哺乳动物中跨越了异路人的辐射。注意到第4层的规范皮质柱轮廓和核心丘脑皮质输入的几种变化。在泼妇/小翅目动物中,第4层存在,但是除了层4和内层3之外,许多核心的丘脑皮质突起在层1中终止。在灵长类初级视觉皮层,次层压层4与特殊的核心丘脑皮质投射模式相关。在灵长类初级运动皮层,没有明显的细胞结构上不同的层4,并且整个层3的核心丘脑皮质突起终止。在非洲大象中,鲸目动物,河马,未观察到细胞结构上不同的层4,核心丘脑皮质突起主要在内层3中终止,而在外层3中密度较低。这些发现在皮层处理方面进行了背景化,感知,以及导致皮层模糊或缺失的进化轨迹4。
    Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在艾伦脑科学研究所(RRID:SCR_017001)的数据库中进行数据挖掘,以搜索在成年小鼠中皮层中选择性表达的基因(在哺乳动物皮层结构的同心环理论中预测的过渡皮层环,与中央等皮质[ICx]和外周同种皮质相反)。我们旨在探索所有或大多数中皮层区域的共享分子图谱选择性。这种方法检查并证实了其他先前定义标准的准确性,如不良的髓鞘形成和高的红藻氨酸受体水平。另一个目的是检查哪些皮质区域正确地属于中皮质。共鉴定出34个中皮层阳性成人选择标记基因,结合12个阴性选择标记,总共制作了46个标记。所有这些都确定了分子不同的ICx周围的同一组皮质区域,并排除了相邻的同种皮质。四个代表性的中皮层标记-Crym,Lypd1、Cdh13和Smoc2-被充分说明,与包括髓鞘碱性蛋白在内的互补材料联合,检查髓鞘形成,还有Rorb,检查第4层的存在。后脾(ReSp)区域,长期以来一直是中皮层,不共享中皮层的46个标记中的任何一个,而是表达Nr4a2和Tshz2,即选择性海马旁异皮质标记。此外,它不是低脊髓碱,并且缺乏Rorb阳性层4,这些方面通常存在于中皮层中。从中皮层环中排除ReSp区域表明,后者在该位点处被两个先前被认为是关联视觉ICx的相邻区域封闭(此处在分子上重新标识为脾后和脾副中皮层区域)。ICx的概念,中皮层,和海马旁异皮质因此被大量的分子证据巧妙地修饰。
    Data mining was performed at the databases of the Allen Institute for Brain Science (RRID:SCR_017001) searching for genes expressed selectively throughout the adult mouse mesocortex (transitional cortex ring predicted within the concentric ring theory of mammalian cortical structure, in contrast with central isocortex [ICx] and peripheral allocortex). We aimed to explore a shared molecular profile selective of all or most mesocortex areas. This approach checks and corroborates the precision of other previous definitory criteria, such as poor myelination and high kainate receptor level. Another aim was to examine which cortical areas properly belong to mesocortex. A total of 34 positive adult selective marker genes of mesocortex were identified, jointly with 12 negative selective markers, making a total of 46 markers. All of them identify the same set of cortical areas surrounding the molecularly different ICx as well as excluding adjacent allocortex. Four representative mesocortex markers-Crym, Lypd1, Cdh13, and Smoc2-are amply illustrated, jointly with complementary material including myelin basic protein, to check myelination, and Rorb, to check layer 4 presence. The retrosplenial (ReSp) area, long held to be mesocortical, does not share any of the 46 markers of mesocortex and instead expresses Nr4a2 and Tshz2, selective parahippocampal allocortex markers. Moreover, it is not hypomyelinic and lacks a Rorb-positive layer 4, aspects generally present in mesocortex. Exclusion of the ReSp area from the mesocortex ring reveals the latter to be closed at this locus instead by two adjacent areas previously thought to be associative visual ICx (reidentified here molecularly as postsplenial and parasplenial mesocortex areas). The concepts of ICx, mesocortex, and parahippocampal allocortex are thus subtly modified by substantial molecular evidence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Historical Article
    在19世纪下半叶,许多研究者都在进行皮质细胞结构学和人类大脑皮层组织学的研究,比如雅各布·洛克哈特·克拉克,TheodorMeynert,还有VladimirBetz.这些先驱中的另一个,他的名字在很大程度上被后人遗忘了,这里考虑:赫伯特·科丁顿少校(1850-1921)。在韦克菲尔德的西部骑乘庇护所工作,英国,Major\1875年的论文描述并说明了非人灵长类动物和人类的六层皮质结构,以及与先前描述的那些细胞相对应的“巨型神经细胞”,但没有说明,BetzMajor在1876年和1877年发表的其他期刊出版物证实了他对六个皮质层的发现。然而,少校的工作几乎完全被他同时代的人忽视了,包括他的同事和西部骑术庇护所的学生,威廉·贝文·刘易斯(1847-1929),后来(1878年)报道了五层和六层皮质的存在。Bevan-Lewis的作品后来也被认为是Betz细胞的第一个插图。
    The study of cortical cytoarchitectonics and the histology of the human cerebral cortex was pursued by many investigators in the second half of the nineteenth century, such as Jacob Lockhart Clarke, Theodor Meynert, and Vladimir Betz. Another of these pioneers, whose name has largely been lost to posterity, is considered here: Herbert Coddington Major (1850-1921). Working at the West Riding Asylum in Wakefield, United Kingdom, Major\'s thesis of 1875 described and illustrated six-layered cortical structure in both non-human primates and man, as well as \"giant nerve cells\" which corresponded to those cells previously described, but not illustrated, by Betz. Further journal publications by Major in 1876 and 1877 confirmed his finding of six cortical strata. However, Major\'s work was almost entirely neglected by his contemporaries, including his colleague and sometime pupil at the West Riding Asylum, William Bevan-Lewis (1847-1929), who later (1878) reported the presence of both pentalaminar and hexalaminar cortices. Bevan-Lewis\'s work was also later credited with the first illustration of Betz cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项新的大规模多重免疫荧光研究中,我们全面表征和比较了成年恒河猴的广泛发散的背外侧前额叶皮层(A46)和初级视觉皮层(A17)的感兴趣区域内的层特异性蛋白质组特征。在连续染色的轮次中对28个标记进行了成像,它们的空间分布在灰质层和浅层白质中精确量化。细胞被分类为神经元,星形胶质细胞,少突胶质细胞,小胶质细胞,或内皮细胞。通过对感兴趣区域的染色强度进行定量来评估纤维和血管的分布。该方法揭示了层和区域之间的多变量相似性和差异。神经元中的蛋白质表达是层状和区域差异的最强决定因素,而神经胶质中的蛋白质表达对于区域内层状差异更为重要。在具体结果中,我们观察到A17的神经胶质细胞与神经元的比率低于A46,而泛神经元标记HuD和NeuN在两个大脑区域中的差异分布,与A46和其他A17层相比,A17的第4层和第5层的NeuN强度较低。星形胶质细胞和少突胶质细胞表现出不同的标记特异性层状分布,这些层状分布在区域之间不同;值得注意的是,在A17的第4层中,表达ALDH1L1的星形胶质细胞和少突胶质细胞标志物的比例很高。这里观察到的层和区域之间蛋白质表达的许多细微差别突出了直接评估蛋白质的必要性。除了RNA表达,并为未来在正常和病理条件下对这些和其他大脑区域进行以蛋白质为重点的研究奠定了基础。
    In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells. The distribution of fibers and blood vessels were assessed by quantification of staining intensity across regions of interest. This method revealed multivariate similarities and differences between layers and areas. Protein expression in neurons was the strongest determinant of both laminar and regional differences, whereas protein expression in glia was more important for intra-areal laminar distinctions. Among specific results, we observed a lower glia-to-neuron ratio in A17 than in A46 and the pan-neuronal markers HuD and NeuN were differentially distributed in both brain areas with a lower intensity of NeuN in layers 4 and 5 of A17 compared to A46 and other A17 layers. Astrocytes and oligodendrocytes exhibited distinct marker-specific laminar distributions that differed between regions; notably, there was a high proportion of ALDH1L1-expressing astrocytes and of oligodendrocyte markers in layer 4 of A17. The many nuanced differences in protein expression between layers and regions observed here highlight the need for direct assessment of proteins, in addition to RNA expression, and set the stage for future protein-focused studies of these and other brain regions in normal and pathological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在导航过程中,大脑皮层必须积极地将学习到的空间情境与当前的感官体验相结合,以指导行为.然而,皮质细胞之间的空间和感觉运动信息的相对编码,海马反馈是否在熟悉的环境中继续改变这些特性,仍然知之甚少。因此,使用雄性和雌性Thy1-GCaMP6s小鼠的双光子显微镜对双侧背侧海马病变前后跨越浅表脾后皮质以及初级和次级运动皮质II-Va层的神经元进行纵向成像。在熟悉的提示跑步机上的行为期间,将两个增加的障碍物的位置互换,以使位置相关细胞与这些位置的视野之间的位置调节与线索调节分离。位置调节细胞和线索调节细胞的亚群各自形成区域间梯度,使得更高水平的皮质区域表现出更高的位置细胞分数,而较低级别的区域表现出更高的提示细胞分数。运动皮质中的位置相关细胞也形成了跨层梯度;与更深的细胞相比,更靠近皮质表面的细胞更有可能显示视野,并且更稀疏,更精确地调整。背侧海马病变后,学习环境的神经表现持续存在,但脾后皮质表现出显著增加的提示调整和,在运动皮层中,在不稳定的障碍物位置,与细胞募集和种群活动相关的位置在整个薄层中变得更加均匀地升高。总之,这些结果支持海马在熟悉的环境中继续调节皮质反应,自上而下反馈的相对影响服从与自下而上的感觉输入相反的分层区域间和层间梯度。学习期间的重要性陈述,海马将空间背景赋予整个浅层新皮层的记忆表征。然而,海马在学习后的作用尚未明确.这项研究的结果表明,在熟悉的环境中导航,海马体继续将不可靠的感觉属性与稳定的上下文框架联系起来,有效地更新学习的环境模型。结果也与行为过程中自上而下抑制感觉诱发的活动一致,根据与海马体的等级接近度,强度不同。背侧海马的双侧病变消除了这种作用,支持海马在整个皮层层次结构中传播上下文相关预测方面发挥持续作用,预测编码理论框架的核心假设。
    During navigation, the neocortex actively integrates learned spatial context with current sensory experience to guide behaviors. However, the relative encoding of spatial and sensorimotor information among cortical cells, and whether hippocampal feedback continues to modify these properties after learning, remains poorly understood. Thus, two-photon microscopy of male and female Thy1-GCaMP6s mice was used to longitudinally image neurons spanning superficial retrosplenial cortex and layers II-Va of primary and secondary motor cortices before and after bilateral dorsal hippocampal lesions. During behavior on a familiar cued treadmill, the locations of two obstacles were interchanged to decouple place-tuning from cue-tuning among position-correlated cells with fields at those locations. Subpopulations of place and cue cells each formed interareal gradients such that higher-level cortical regions exhibited higher fractions of place cells, whereas lower-level regions exhibited higher fractions of cue cells. Position-correlated cells in the motor cortex also formed translaminar gradients; more superficial cells were more likely to exhibit fields and were more sparsely and precisely tuned than deeper cells. After dorsal hippocampal lesions, a neural representation of the learned environment persisted, but retrosplenial cortex exhibited significantly increased cue-tuning, and, in motor cortices, both position-correlated cell recruitment and population activity at the unstable obstacle locations became more homogeneously elevated across laminae. Altogether, these results support that the hippocampus continues to modulate cortical responses in familiar environments, and the relative impact of descending feedback obeys hierarchical interareal and interlaminar gradients opposite to the flow of ascending sensory inputs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多巴胺严重影响奖励处理,感官知觉,和电机控制。然而,感觉经验对多巴胺能信号的调节还没有完全描述。这里,通过使用双侧单行晶须剥夺进行人工感官体验,我们证明,多巴胺能信号通路(DSP)中的基因转录在初级体感(桶状)皮层(S1)的颗粒层和球上层都经历了经验依赖性可塑性。感官体验和剥夺竞争DSP转录在邻近皮质柱中的重新调节,感觉剥夺引起的DSP变化在地形上受到限制。DSP中的这些变化超出了皮质图的可塑性,并影响神经元信息处理。D2受体的药理学规范,DSP的关键部件,揭示D2受体激活抑制兴奋性神经元兴奋性,超极化-使动作电位阈值,并降低瞬时点火率。这些发现表明,多巴胺能驱动起源于中脑多巴胺能神经元,瞄准感觉皮层,受到经验依赖的调节,可能会创建一个调节反馈回路来调节感官处理。最后,利用拓扑基因网络分析和互信息,我们确定了DSP经验依赖可塑性的分子中心。这些发现为感觉体验塑造大脑中多巴胺能信号的机制提供了新的见解,并可能有助于解开多巴胺耗尽后观察到的感觉缺陷。
    Dopamine critically influences reward processing, sensory perception, and motor control. Yet, the modulation of dopaminergic signaling by sensory experiences is not fully delineated. Here, by manipulating sensory experience using bilateral single-row whisker deprivation, we demonstrated that gene transcription in the dopaminergic signaling pathway (DSP) undergoes experience-dependent plasticity in both granular and supragranular layers of the primary somatosensory (barrel) cortex (S1). Sensory experience and deprivation compete for the regulation of DSP transcription across neighboring cortical columns, and sensory deprivation-induced changes in DSP are topographically constrained. These changes in DSP extend beyond cortical map plasticity and influence neuronal information processing. Pharmacological regulation of D2 receptors, a key component of DSP, revealed that D2 receptor activation suppresses excitatory neuronal excitability, hyperpolarizes the action potential threshold, and reduces the instantaneous firing rate. These findings suggest that the dopaminergic drive originating from midbrain dopaminergic neurons, targeting the sensory cortex, is subject to experience-dependent regulation and might create a regulatory feedback loop for modulating sensory processing. Finally, using topological gene network analysis and mutual information, we identify the molecular hubs of experience-dependent plasticity of DSP. These findings provide new insights into the mechanisms by which sensory experience shapes dopaminergic signaling in the brain and might help unravel the sensory deficits observed after dopamine depletion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    选择性注意力被认为取决于在跨种族地区增强的射击活动。理论表明,这种增强取决于通过伽玛(30-80Hz)锁相进行的选择性区域间通信。为了测试这个,我们同时记录了猕猴V1和V4的不同细胞类型和皮质层。我们发现,虽然局部场势之间的V1-V4伽马锁相随着注意力的增加而增加,V1伽马节律不参与V4兴奋性神经元,但只有V4的L4中的快速尖峰中间神经元。相比之下,注意力增强了兴奋性和抑制性细胞的V4尖峰率,在L2/3中最强。V4的L2/3的速率增加在时间上先于V1。这些发现表明,注意力增强的信号传输不依赖于区域间的伽马锁相,并且表明内源性伽马节律对下游目标区域具有细胞类型和层特异性影响。在小鼠视觉系统中也有类似的发现,基于识别的中间神经元的光学标记。
    Selective attention is thought to depend on enhanced firing activity in extrastriate areas. Theories suggest that this enhancement depends on selective inter-areal communication via gamma (30-80 Hz) phase-locking. To test this, we simultaneously recorded from different cell types and cortical layers of macaque V1 and V4. We find that while V1-V4 gamma phase-locking between local field potentials increases with attention, the V1 gamma rhythm does not engage V4 excitatory-neurons, but only fast-spiking interneurons in L4 of V4. By contrast, attention enhances V4 spike-rates in both excitatory and inhibitory cells, most strongly in L2/3. The rate increase in L2/3 of V4 precedes V1 in time. These findings suggest enhanced signal transmission with attention does not depend on inter-areal gamma phase-locking and show that the endogenous gamma rhythm has cell-type- and layer-specific effects on downstream target areas. Similar findings were made in the mouse visual system, based on opto-tagging of identified interneurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    感觉区域中神经元的活动有时会与决策任务中即将到来的选择保持一致。然而,患病率,因果起源,与选择相关的活动的功能作用仍然存在争议。了解感官区域中决策信号的电路逻辑将需要了解它们的层状特异性,但是,在强制选择辨别任务中,皮层层的神经活动的同时记录尚未进行。这里,我们通过延迟报告的频率辨别任务描述了小鼠听觉皮层中的神经活动,which,正如我们所展示的,需要听觉皮层.与刺激相关的信息广泛分布在各层,但在刺激抵消后很快消失。选择选择性出现在延迟期结束时-表明自上而下的起源-但仅在深层。早期刺激选择性和晚期选择选择性深度神经集合是相关的,这表明反馈到听觉皮层的选择选择信号不仅是动作特异性的,而且是由于任务施加的感觉运动偶然性而发展的。
    The activity of neurons in sensory areas sometimes covaries with upcoming choices in decision-making tasks. However, the prevalence, causal origin, and functional role of choice-related activity remain controversial. Understanding the circuit-logic of decision signals in sensory areas will require understanding their laminar specificity, but simultaneous recordings of neural activity across the cortical layers in forced-choice discrimination tasks have not yet been performed. Here, we describe neural activity from such recordings in the auditory cortex of mice during a frequency discrimination task with delayed report, which, as we show, requires the auditory cortex. Stimulus-related information was widely distributed across layers but disappeared very quickly after stimulus offset. Choice selectivity emerged toward the end of the delay period-suggesting a top-down origin-but only in the deep layers. Early stimulus-selective and late choice-selective deep neural ensembles were correlated, suggesting that the choice-selective signal fed back to the auditory cortex is not just action specific but develops as a consequence of the sensory-motor contingency imposed by the task.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非侵入性脑刺激有可能增强初级运动皮层(M1)的神经元可塑性,但目前尚不清楚刺激人运动皮层的表层和深层是否能有效促进M1可塑性。这里,我们利用经颅超声刺激(TUS)精确靶向距皮质表面约5mm和16mm深度的M1回路.最初,我们从每个参与者的个体解剖磁共振图像(MRI)生成计算机断层扫描图像,这允许生成精确的声学模拟。该过程确保个性化TUS被精确地管理到每个参与者的M1内的目标深度。使用长期抑郁和长期增强(LTD/LTP)theta爆发刺激范例,我们研究了M1不同深度的TUS是否可以诱导LTD/LTP可塑性。我们的发现表明,连续theta爆发TUS诱导的LTD样可塑性与表面和深层M1刺激,坚持至少30分钟。相比之下,假TUS没有显著改变M1兴奋性。此外,间歇性theta爆发TUS不会导致浅层或深层M1刺激引起LTP或LTD样可塑性。这些发现表明,可以通过针对M1的不同深度的超声刺激来实现M1可塑性的诱导,这取决于TUS的特征。要点:该研究将个性化的经颅超声刺激(TUS)与电生理学相结合,以确定针对人类运动皮层(M1)的浅层和深层的TUS是否会引起长期抑郁症(LTD)或长期增强(LTP)的可塑性变化。利用从个性化的伪计算机断层扫描得到的声学模拟,我们确保每个参与者的TUS传输到预期的M1深度的精度。针对M1的表层和深层的连续theta爆裂TUS导致了LTD样可塑性的出现,持续至少30分钟。对M1的表层和深层施用间歇性theta-burstTUS不会导致诱导LTP或LTD样塑性变化。我们建议针对M1的不同深度的theta爆发TUS可以诱导可塑性,但这种效果取决于特定的TUS参数。
    Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant\'s individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号