Computer-aided diagnosis

计算机辅助诊断
  • 文章类型: Letter
    原发性弥漫性中枢神经系统大B细胞淋巴瘤(CNS-pDLBCL)和高级别神经胶质瘤(HGG)通常表现相似,临床和成像,使差异化具有挑战性。这种相似性会使病理学家的诊断工作复杂化,然而,准确区分这些条件对于指导治疗决策至关重要。本研究利用深度学习模型对脑肿瘤病理图像进行分类,解决医学影像数据有限的常见问题。而不是从头开始训练卷积神经网络(CNN),我们使用预先训练的网络来提取深层特征,然后由支持向量机(SVM)用于分类。我们的评估表明,Resnet50(TL+SVM)模型达到97.4%的准确率,基于测试集上的十倍交叉验证。这些结果突出了深度学习和传统诊断之间的协同作用,可能为脑肿瘤的病理诊断的准确性和效率设定新的标准。
    Primary diffuse central nervous system large B-cell lymphoma (CNS-pDLBCL) and high-grade glioma (HGG) often present similarly, clinically and on imaging, making differentiation challenging. This similarity can complicate pathologists\' diagnostic efforts, yet accurately distinguishing between these conditions is crucial for guiding treatment decisions. This study leverages a deep learning model to classify brain tumor pathology images, addressing the common issue of limited medical imaging data. Instead of training a convolutional neural network (CNN) from scratch, we employ a pre-trained network for extracting deep features, which are then used by a support vector machine (SVM) for classification. Our evaluation shows that the Resnet50 (TL + SVM) model achieves a 97.4% accuracy, based on tenfold cross-validation on the test set. These results highlight the synergy between deep learning and traditional diagnostics, potentially setting a new standard for accuracy and efficiency in the pathological diagnosis of brain tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    骨龄评估(BAA)对于诊断生长障碍和优化治疗至关重要。然而,由不同的观察者经验引起的随机误差和重复评估的低一致性损害了此类评估的质量。因此,需要自动评估方法。
    先前的研究试图以强或弱监督的方式设计定位模块,以聚合部分区域,从而更好地识别细微差别。相反,我们寻求在多粒度区域之间有效地传递信息以进行细粒度特征学习,并直接对远距离关系进行建模以进行全局理解。所提出的方法被命名为“多粒度和多注意力网(2M-Net)”。具体来说,我们首先应用拼图法生成强调不同粒度区域的相关任务,然后我们使用分层共享机制在这些任务上训练模型。实际上,作为感应偏差创建的额外任务的训练信号,使2M-Net能够在不需要注释的情况下发现任务相关性。接下来,自注意机制充当即插即用模块,有效增强了特征表示能力。最后,应用多尺度特征进行预测。
    一组14,236张手部射线照片的公共数据集,由北美放射学会(RSNA)提供,用于开发和验证2M-Net。在公共基准测试中,模型和审查者的骨龄估计值之间的平均绝对误差(MAE)为3.98个月(男性为3.89个月,女性为4.07个月)。
    通过使用拼图方法构建多任务学习策略,并插入自我注意模块以进行高效的全局建模,我们建立了2M-Net,在性能方面与以前的最佳方法相当。
    UNASSIGNED: Bone age assessment (BAA) is crucial for the diagnosis of growth disorders and the optimization of treatments. However, the random error caused by different observers\' experiences and the low consistency of repeated assessments harms the quality of such assessments. Thus, automated assessment methods are needed.
    UNASSIGNED: Previous research has sought to design localization modules in a strongly or weakly supervised fashion to aggregate part regions to better recognize subtle differences. Conversely, we sought to efficiently deliver information between multi-granularity regions for fine-grained feature learning and to directly model long-distance relationships for global understanding. The proposed method has been named the \"Multi-Granularity and Multi-Attention Net (2M-Net)\". Specifically, we first applied the jigsaw method to generate related tasks emphasizing regions with different granularities, and we then trained the model on these tasks using a hierarchical sharing mechanism. In effect, the training signals from the extra tasks created as an inductive bias, enabling 2M-Net to discover task relatedness without the need for annotations. Next, the self-attention mechanism acted as a plug-and-play module to effectively enhance the feature representation capabilities. Finally, multi-scale features were applied for prediction.
    UNASSIGNED: A public data set of 14,236 hand radiographs, provided by the Radiological Society of North America (RSNA), was used to develop and validate 2M-Net. In the public benchmark testing, the mean absolute error (MAE) between the bone age estimates of the model and of the reviewer was 3.98 months (3.89 months for males and 4.07 months for females).
    UNASSIGNED: By using the jigsaw method to construct a multi-task learning strategy and inserting the self-attention module for efficient global modeling, we established 2M-Net, which is comparable to the previous best method in terms of performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着计算机辅助诊断的发展,COVID-19感染区域的自动分割对于在临床实践中帮助患者及时诊断和康复具有很大的前景.目前,依赖于U-Net的方法在有效利用来自输入图像的细粒度语义信息以及弥合编码器和解码器之间的语义鸿沟方面面临挑战。为了解决这些问题,我们提出了一种用于COVID-19感染分割的FMD-UNet双解码器U-Net网络,它集成了细粒度特征压缩(FGFS)解码器和多尺度扩展语义聚合(MDSA)解码器。FGFS解码器通过压缩细粒度特征和加权注意力机制来产生精细特征图,指导模型捕获详细的语义信息。MDSA解码器由三个分层MDSA模块组成,该模块针对输入信息的不同阶段而设计。这些模块逐步融合不同规模的扩张卷积来处理来自编码器的浅层和深层语义信息,并使用提取的特征信息来弥合各个阶段的语义鸿沟,此设计捕获广泛的上下文信息,同时解码和预测分割,从而抑制模型参数的增加。为了更好地验证FMD-UNet的鲁棒性和泛化性,我们对三个公共数据集进行了全面的性能评估和消融实验,并在COVID-19感染细分中获得了84.76、78.56和61.99%的领先骰子相似系数(DSC)得分,分别。与以前的方法相比,FMD-UNet的参数更少,推断时间更短,这也证明了它的竞争力。
    With the advancement of computer-aided diagnosis, the automatic segmentation of COVID-19 infection areas holds great promise for assisting in the timely diagnosis and recovery of patients in clinical practice. Currently, methods relying on U-Net face challenges in effectively utilizing fine-grained semantic information from input images and bridging the semantic gap between the encoder and decoder. To address these issues, we propose an FMD-UNet dual-decoder U-Net network for COVID-19 infection segmentation, which integrates a Fine-grained Feature Squeezing (FGFS) decoder and a Multi-scale Dilated Semantic Aggregation (MDSA) decoder. The FGFS decoder produces fine feature maps through the compression of fine-grained features and a weighted attention mechanism, guiding the model to capture detailed semantic information. The MDSA decoder consists of three hierarchical MDSA modules designed for different stages of input information. These modules progressively fuse different scales of dilated convolutions to process the shallow and deep semantic information from the encoder, and use the extracted feature information to bridge the semantic gaps at various stages, this design captures extensive contextual information while decoding and predicting segmentation, thereby suppressing the increase in model parameters. To better validate the robustness and generalizability of the FMD-UNet, we conducted comprehensive performance evaluations and ablation experiments on three public datasets, and achieved leading Dice Similarity Coefficient (DSC) scores of 84.76, 78.56 and 61.99% in COVID-19 infection segmentation, respectively. Compared to previous methods, the FMD-UNet has fewer parameters and shorter inference time, which also demonstrates its competitiveness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在实际心电图(ECG)解释中,注释好的数据的稀缺是一个共同的挑战。迁移学习技术在这种情况下很有价值,然而,对可转移性的评估受到的关注有限。为了解决这个问题,我们介绍MELEP,代表经验预测的多标签预期日志,一种旨在评估从预训练模型到下游多标签ECG诊断任务的知识转移有效性的措施。MELEP是通用的,使用具有不同标签集的新目标数据,计算效率高,只需要通过预训练模型的一次前向传递。据我们所知,MELEP是专为多标签ECG分类问题而设计的第一个可转移性度量。我们的实验表明,MELEP可以预测预训练的卷积和递归深度神经网络的性能,在小的和不平衡的心电图数据。具体来说,我们观察到MELEP与微调模型的实际平均F1评分之间存在强相关系数(大多数情况下绝对值超过0.6).我们的工作强调了MELEP加快为ECG诊断任务选择合适的预训练模型的潜力。节省时间和精力,否则将花费在微调这些模型。
    In practical electrocardiography (ECG) interpretation, the scarcity of well-annotated data is a common challenge. Transfer learning techniques are valuable in such situations, yet the assessment of transferability has received limited attention. To tackle this issue, we introduce MELEP, which stands for Muti-label Expected Log of Empirical Predictions, a measure designed to estimate the effectiveness of knowledge transfer from a pre-trained model to a downstream multi-label ECG diagnosis task. MELEP is generic, working with new target data with different label sets, and computationally efficient, requiring only a single forward pass through the pre-trained model. To the best of our knowledge, MELEP is the first transferability metric specifically designed for multi-label ECG classification problems. Our experiments show that MELEP can predict the performance of pre-trained convolutional and recurrent deep neural networks, on small and imbalanced ECG data. Specifically, we observed strong correlation coefficients (with absolute values exceeding 0.6 in most cases) between MELEP and the actual average F1 scores of the fine-tuned models. Our work highlights the potential of MELEP to expedite the selection of suitable pre-trained models for ECG diagnosis tasks, saving time and effort that would otherwise be spent on fine-tuning these models.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:确定在乳腺超声(US)中添加弹性成像应变比(SR)和基于深度学习的计算机辅助诊断(CAD)系统是否有助于重新分类乳腺影像报告和数据系统(BI-RADS)3和4a-c类别并避免不必要的活检。
    方法:这种前瞻性,多中心研究包括1049个肿块(691个良性,358个恶性),在2020年至2022年之间分配了BI-RADS3和4a-c。CAD结果被分为可能是恶性的与良性。所有患者均接受SR和CAD检查,组织病理学检查结果为参考标准。用SR和CAD重新分类(新的BI-RADS3)后,减少不必要的活检(良性病变的活检)和错过的恶性肿瘤是结局指标。
    结果:在常规常规乳腺US评估之后,48.6%(691个肿块中的336个)接受了不必要的活检。在重新分类BI-RADS4a肿块后(SR截止值<2.90,CAD二分可能是良性的),25.62%(691个肿块中的177个)接受了不必要的活检,相当于50.14%(177vs.355)减少不必要的活检。重新分类后,在新的BI-RADS3组中,只有1.72%(523个中的9个)的恶性肿瘤被漏诊.
    结论:将SR和CAD添加到临床实践中可能显示出将BI-RADS4a重新分类为3类的最佳性能,通过将未发现的恶性肿瘤的发生率保持在1.72%的可接受值,可以使50.14%的肿块受益。
    结论:利用SR与CAD结合的潜力在大幅降低与BI-RADS3和4A病变相关的活检频率方面具有巨大的前景。从而赋予该队列中涵盖的患者实质性优势。
    OBJECTIVE: To determine whether adding elastography strain ratio (SR) and a deep learning based computer-aided diagnosis (CAD) system to breast ultrasound (US) can help reclassify Breast Imaging Reporting and Data System (BI-RADS) 3 & 4a-c categories and avoid unnecessary biopsies.
    METHODS: This prospective, multicenter study included 1049 masses (691 benign, 358 malignant) with assigned BI-RADS 3 & 4a-c between 2020 and 2022. CAD results was dichotomized possibly malignant vs. benign. All patients underwent SR and CAD examinations and histopathological findings were the standard of reference. Reduction of unnecessary biopsies (biopsies in benign lesions) and missed malignancies after reclassified (new BI-RADS 3) with SR and CAD were the outcome measures.
    RESULTS: Following the routine conventional breast US assessment, 48.6% (336 of 691 masses) underwent unnecessary biopsies. After reclassifying BI-RADS 4a masses (SR cut-off < 2.90, CAD dichotomized possibly benign), 25.62% (177 of 691 masses) underwent an unnecessary biopsies corresponding to a 50.14% (177 vs. 355) reduction of unnecessary biopsies. After reclassification, only 1.72% (9 of 523 masses) malignancies were missed in the new BI-RADS 3 group.
    CONCLUSIONS: Adding SR and CAD to clinical practice may show an optimal performance in reclassifying BI-RADS 4a to 3 categories, and 50.14% masses would be benefit by keeping the rate of undetected malignancies with an acceptable value of 1.72%.
    CONCLUSIONS: Leveraging the potential of SR in conjunction with CAD holds immense promise in substantially reducing the biopsy frequency associated with BI-RADS 3 and 4A lesions, thereby conferring substantial advantages upon patients encompassed within this cohort.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:深度学习在图像分割技术中的集成显著提高了医疗诊断系统的自动化能力,减少对医疗专业人员临床专业知识的依赖。然而,图像分割的准确性仍然受到图像采集过程中遇到的各种干扰因素的影响。
    方法:为了应对这一挑战,本文提出了一种损失函数,用于挖掘训练过程中动态变化的特定像素信息。基于三元组的概念,利用这种动态变化来驱动图像的预测边界更接近真实边界。
    结果:对PH2和ISIC2017皮肤镜数据集进行的大量实验验证了我们提出的损失函数克服了传统三元组损失方法在图像分割应用中的局限性。该损失函数不仅将PH2和ISIC2017的Jaccard神经网络指数分别提高了2.42%和2.21%,而且,利用这种损失函数的神经网络通常会超过那些在分割性能方面没有的神经网络。
    结论:这项工作提出了一种损失函数,该函数在不产生额外培训成本的情况下对特定像素的信息进行了深入挖掘,显著提高了神经网络在图像分割任务中的自动化程度。与其他边界损失函数相比,此损失函数可适应不同质量的皮肤图像,并具有更高的有效性和鲁棒性。使其适用于跨各种神经网络的图像分割任务。
    OBJECTIVE: The integration of deep learning in image segmentation technology markedly improves the automation capabilities of medical diagnostic systems, reducing the dependence on the clinical expertise of medical professionals. However, the accuracy of image segmentation is still impacted by various interference factors encountered during image acquisition.
    METHODS: To address this challenge, this paper proposes a loss function designed to mine specific pixel information which dynamically changes during training process. Based on the triplet concept, this dynamic change is leveraged to drive the predicted boundaries of images closer to the real boundaries.
    RESULTS: Extensive experiments on the PH2 and ISIC2017 dermoscopy datasets validate that our proposed loss function overcomes the limitations of traditional triplet loss methods in image segmentation applications. This loss function not only enhances Jaccard indices of neural networks by 2.42 % and 2.21 % for PH2 and ISIC2017, respectively, but also neural networks utilizing this loss function generally surpass those that do not in terms of segmentation performance.
    CONCLUSIONS: This work proposed a loss function that mined the information of specific pixels deeply without incurring additional training costs, significantly improving the automation of neural networks in image segmentation tasks. This loss function adapts to dermoscopic images of varying qualities and demonstrates higher effectiveness and robustness compared to other boundary loss functions, making it suitable for image segmentation tasks across various neural networks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:经颅超声(TCS)在帕金森病的诊断中起着至关重要的作用。然而,TCS病理特征的复杂性,缺乏一致的诊断标准,对医生专业知识的依赖会阻碍准确的诊断。当前基于TCS的诊断方法,依赖于机器学习,通常涉及复杂的特征工程,并且可能难以捕获深层图像特征。虽然深度学习在图像处理方面具有优势,尚未针对特定的TCS和运动障碍考虑因素进行定制。因此,基于TCS的PD诊断的深度学习算法的研究很少。
    方法:本研究引入了深度学习残差网络模型,增强了注意力机制和多尺度特征提取,称为AMSNet,协助准确诊断。最初,实现了多尺度特征提取模块,以鲁棒地处理TCS图像中存在的不规则形态特征和显著区域信息。该模块有效地减轻了伪影和噪声的影响。当与卷积注意模块结合时,它增强了模型学习病变区域特征的能力。随后,剩余的网络架构,与频道注意力相结合,用于捕获图像中的分层和详细的纹理,进一步增强模型的特征表示能力。
    结果:该研究汇总了1109名参与者的TCS图像和个人数据。在该数据集上进行的实验表明,AMSNet取得了显著的分类准确率(92.79%),精度(95.42%),和特异性(93.1%)。它超越了以前在该领域采用的机器学习算法的性能,以及当前的通用深度学习模型。
    结论:本研究中提出的AMSNet偏离了需要复杂特征工程的传统机器学习方法。它能够自动提取和学习深度病理特征,并且有能力理解和表达复杂的数据。这强调了深度学习方法在应用TCS图像诊断运动障碍方面的巨大潜力。
    BACKGROUND: Transcranial sonography (TCS) plays a crucial role in diagnosing Parkinson\'s disease. However, the intricate nature of TCS pathological features, the lack of consistent diagnostic criteria, and the dependence on physicians\' expertise can hinder accurate diagnosis. Current TCS-based diagnostic methods, which rely on machine learning, often involve complex feature engineering and may struggle to capture deep image features. While deep learning offers advantages in image processing, it has not been tailored to address specific TCS and movement disorder considerations. Consequently, there is a scarcity of research on deep learning algorithms for TCS-based PD diagnosis.
    METHODS: This study introduces a deep learning residual network model, augmented with attention mechanisms and multi-scale feature extraction, termed AMSNet, to assist in accurate diagnosis. Initially, a multi-scale feature extraction module is implemented to robustly handle the irregular morphological features and significant area information present in TCS images. This module effectively mitigates the effects of artifacts and noise. When combined with a convolutional attention module, it enhances the model\'s ability to learn features of lesion areas. Subsequently, a residual network architecture, integrated with channel attention, is utilized to capture hierarchical and detailed textures within the images, further enhancing the model\'s feature representation capabilities.
    RESULTS: The study compiled TCS images and personal data from 1109 participants. Experiments conducted on this dataset demonstrated that AMSNet achieved remarkable classification accuracy (92.79%), precision (95.42%), and specificity (93.1%). It surpassed the performance of previously employed machine learning algorithms in this domain, as well as current general-purpose deep learning models.
    CONCLUSIONS: The AMSNet proposed in this study deviates from traditional machine learning approaches that necessitate intricate feature engineering. It is capable of automatically extracting and learning deep pathological features, and has the capacity to comprehend and articulate complex data. This underscores the substantial potential of deep learning methods in the application of TCS images for the diagnosis of movement disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在称为急性淋巴细胞白血病(ALL)的恶性肿瘤中,骨髓过度产生未成熟细胞。在美国,每年在儿童和成人中诊断出大约6500例ALL,占儿科癌症病例的近25%。最近,许多计算机辅助诊断(CAD)系统已被提出来帮助血液学家减少工作量,提供正确的结果,管理大量的数据。传统的CAD系统依赖于血液学家的专业知识,专业功能,和学科知识。利用ALL的早期检测可以帮助放射科医生和医生做出医疗决策。在这项研究中,提出了深度扩张剩余卷积神经网络(DDRNet)用于血细胞图像的分类,专注于嗜酸性粒细胞,淋巴细胞,单核细胞,和中性粒细胞。为了应对梯度消失和增强特征提取等挑战,该模型采用了深度剩余膨胀块(DRDB),以加快收敛速度。传统的残差块策略性地放置在层之间,以保留原始信息并提取一般特征图。全局和局部特征增强块(GLFEB)平衡来自浅层的弱贡献,以改进特征归一化。来自初始卷积层的全局特征,当与GLFEB处理的特征结合时,加强分类表示。Tanh函数引入非线性。通道和空间注意块(CSAB)被集成到神经网络中,以强调或最小化特定的特征通道,而完全连接的图层转换数据。乙状结肠激活函数的使用集中在多类淋巴细胞白血病分类的相关特征上。使用分为四类的Kaggle数据集(16,249张图像)对模型进行了分析,训练和测试比例为80:20。实验结果表明,DRDB,GLFEB和CSAB块的特征辨别能力将DDRNet模型F1分数提高到0.96,并且对于训练和测试数据具有最小的计算复杂度和99.86%和91.98%的最佳分类精度。DDRNet模型由于其91.98%的高测试精度而从现有方法中脱颖而出,F1得分为0.96,计算复杂度最低,增强了特征辨别能力。这些区块的战略组合(DRDB,GLFEB,和CSAB)旨在解决分类过程中的具体挑战,导致改进的特征区分对于准确的多类血细胞图像识别至关重要。它们在模型中的有效集成有助于DDRNet的卓越性能。
    The bone marrow overproduces immature cells in the malignancy known as Acute Lymphoblastic Leukemia (ALL). In the United States, about 6500 occurrences of ALL are diagnosed each year in both children and adults, comprising nearly 25% of pediatric cancer cases. Recently, many computer-assisted diagnosis (CAD) systems have been proposed to aid hematologists in reducing workload, providing correct results, and managing enormous volumes of data. Traditional CAD systems rely on hematologists\' expertise, specialized features, and subject knowledge. Utilizing early detection of ALL can aid radiologists and doctors in making medical decisions. In this study, Deep Dilated Residual Convolutional Neural Network (DDRNet) is presented for the classification of blood cell images, focusing on eosinophils, lymphocytes, monocytes, and neutrophils. To tackle challenges like vanishing gradients and enhance feature extraction, the model incorporates Deep Residual Dilated Blocks (DRDB) for faster convergence. Conventional residual blocks are strategically placed between layers to preserve original information and extract general feature maps. Global and Local Feature Enhancement Blocks (GLFEB) balance weak contributions from shallow layers for improved feature normalization. The global feature from the initial convolution layer, when combined with GLFEB-processed features, reinforces classification representations. The Tanh function introduces non-linearity. A Channel and Spatial Attention Block (CSAB) is integrated into the neural network to emphasize or minimize specific feature channels, while fully connected layers transform the data. The use of a sigmoid activation function concentrates on relevant features for multiclass lymphoblastic leukemia classification The model was analyzed with Kaggle dataset (16,249 images) categorized into four classes, with a training and testing ratio of 80:20. Experimental results showed that DRDB, GLFEB and CSAB blocks\' feature discrimination ability boosted the DDRNet model F1 score to 0.96 with minimal computational complexity and optimum classification accuracy of 99.86% and 91.98% for training and testing data. The DDRNet model stands out from existing methods due to its high testing accuracy of 91.98%, F1 score of 0.96, minimal computational complexity, and enhanced feature discrimination ability. The strategic combination of these blocks (DRDB, GLFEB, and CSAB) are designed to address specific challenges in the classification process, leading to improved discrimination of features crucial for accurate multi-class blood cell image identification. Their effective integration within the model contributes to the superior performance of DDRNet.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对于全世界65岁以上的人来说,跌倒是一个主要问题。客观的跌倒风险评估在临床实践中很少见。最常见的评估方法是耗时的观察测试(临床测试)。计算机辅助诊断可能是一个很大的帮助。一种流行的跌倒风险临床试验是坐立五次。完成测试所需的时间是识别风险最高的患者的最常用指标。然而,跟踪骨骼关节的运动可以提供更丰富的见解。我们使用无标记动作捕捉,与代表性模型结盟,识别有跌倒风险的人。我们的方法使用LSTM自动编码器来导出距离度量。使用此措施,我们引入了一个新的评分系统,允许具有不同跌倒风险的个体被放置在连续的规模上。在KINECAL数据集上评估我们的方法,我们对跌倒风险升高者的识别准确率为0.84.除了确定潜在的下跌者,我们的方法可以在康复中找到应用。这符合KINECAL数据集的目标。KINECAL包含90个人的记录,这些记录在临床评估中使用了11种运动。KINECAL被标记为消除与年龄相关的下降和跌倒风险。
    Falls are a major issue for those over the age of 65 years worldwide. Objective assessment of fall risk is rare in clinical practice. The most common methods of assessment are time-consuming observational tests (clinical tests). Computer-aided diagnosis could be a great help. A popular clinical test for fall risk is the five times sit-to-stand. The time taken to complete the test is the most commonly used metric to identify the most at-risk patients. However, tracking the movement of skeletal joints can provide much richer insights. We use markerless motion capture, allied with a representational model, to identify those at risk of falls. Our method uses an LSTM autoencoder to derive a distance measure. Using this measure, we introduce a new scoring system, allowing individuals with differing falls risks to be placed on a continuous scale. Evaluating our method on the KINECAL dataset, we achieved an accuracy of 0.84 in identifying those at elevated falls risk. In addition to identifying potential fallers, our method could find applications in rehabilitation. This aligns with the goals of the KINECAL Dataset. KINECAL contains the recordings of 90 individuals undertaking 11 movements used in clinical assessments. KINECAL is labelled to disambiguate age-related decline and falls risk.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人工智能(AI)是我们时代的现实,并在各个领域成功实施,包括药物。作为一个相对较新的领域,所有的努力都致力于创建适用于大多数医学专业的算法。病理学,作为精准医学最重要的领域之一,在AI算法的开发和实现方面受到了极大的关注。这个焦点对于实现准确的诊断尤其重要。此外,免疫组织化学(IHC)可作为病理学的补充诊断工具。通过应用深度学习(DL)和机器学习(ML)算法来评估和分析免疫组织化学标记,可以进一步增强它。这样的进步可以帮助描绘靶向治疗方法和预后分层。本文探讨了各种AI软件程序和平台在免疫组织化学分析中的应用和集成。最后强调了这些技术在乳腺等病理中的应用,前列腺,肺,黑素细胞增殖,和血液学状况。此外,它强调了进一步创新的诊断算法的必要性,以协助医生在诊断过程中。
    Artificial intelligence (AI) is a reality of our times, and it has been successfully implemented in all fields, including medicine. As a relatively new domain, all efforts are directed towards creating algorithms applicable in most medical specialties. Pathology, as one of the most important areas of interest for precision medicine, has received significant attention in the development and implementation of AI algorithms. This focus is especially important for achieving accurate diagnoses. Moreover, immunohistochemistry (IHC) serves as a complementary diagnostic tool in pathology. It can be further augmented through the application of deep learning (DL) and machine learning (ML) algorithms for assessing and analyzing immunohistochemical markers. Such advancements can aid in delineating targeted therapeutic approaches and prognostic stratification. This article explores the applications and integration of various AI software programs and platforms used in immunohistochemical analysis. It concludes by highlighting the application of these technologies to pathologies such as breast, prostate, lung, melanocytic proliferations, and hematologic conditions. Additionally, it underscores the necessity for further innovative diagnostic algorithms to assist physicians in the diagnostic process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号