Cohesin

  • 文章类型: Journal Article
    Cohesin,具有四个核心亚基的染色质相关蛋白复合物(Smc1a,Smc3、Rad21和Stag1或2),在后生动物的细胞增殖和基因表达中起着核心作用。称为“粘附蛋白病”的人类发育障碍的特征是粘附蛋白或其调节剂的种系突变,不能完全消除粘附蛋白的功能。然而,尚不清楚单个粘附素亚基中的突变是否具有独立的发育后果。在这里,我们表明斑马鱼rad21或stag2b突变体独立影响胚胎尾芽发育。两种突变体都改变了中胚层的诱导,但只有纯合或杂合rad21突变影响细胞周期基因表达。stag2b突变体在神经中胚层祖细胞中具有较窄的脊索和减少的Wnt信号,如单细胞RNA测序所揭示的。Wnt信号的刺激挽救stag2b的转录和形态,但不是rad21突变体.我们的结果表明,改变粘附分子数量与组成的突变具有独立的发育后果,对该病的理解和管理具有重要意义。
    Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed \"cohesinopathies\" are characterised by germline mutations in cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear if mutations in individual cohesin subunits have independent developmental consequences. Here we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single cell RNA-sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21 mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表观遗传学是研究基因组和基因表达模式的可遗传变化,这些变化不是由DNA序列的直接变化引起的。这些变化的例子包括对DNA结合的组蛋白的翻译后修饰,DNA甲基化,和重建核架构。总的来说,表观遗传变化提供了一层调控,影响基因的转录活性,同时保持DNA序列不变。已经在先天性心脏病(CHD)患者中发现了影响负责修饰或感知表观遗传标记的酶的序列变异或突变。和表观遗传复合物的小分子抑制剂已显示出有望作为成人心脏病的疗法。此外,具有编码表观遗传酶的基因突变或缺失的转基因小鼠概括了人类心脏病的各个方面。一起来看,这些研究结果表明,表观遗传学领域的发展将为我们理解先天性和成人心脏病提供新的治疗机会.
    Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在分裂的细胞中,准确的染色体分离取决于姐妹染色单体的凝聚力,在DNA复制过程中建立的蛋白质连接。卵母细胞中忠实的染色体分离需要凝聚力,首先建立在S阶段,保持完好无损几天到几十年,取决于有机体。卵母细胞中减数分裂内聚力的过早丧失导致非整倍体配子的产生,并随着女性年龄的增长(母亲年龄的影响)导致减数分裂分离错误的发生率增加。流行的模型是内聚连接不会在哺乳动物卵母细胞中翻转。然而,我们以前曾报道过,当减数分裂S期后单个粘附素亚基或粘附素调节因子被击倒时,果蝇卵母细胞会出现内聚相关缺陷.这里,我们使用两种策略仅在果蝇卵母细胞的前期中期表达标记的粘附蛋白亚基,并证明新表达的粘附蛋白可用于在减数分裂S期后形成从头连接。在前期,沿着卵母细胞染色体臂的Cohesin似乎在2天内完全翻转,而在着丝粒的置换不那么广泛。与S阶段内聚建立不同,减数分裂前期形成新的内聚键不需要Smc3头部内保守赖氨酸的乙酰化。我们的发现表明,果蝇卵母细胞中S期和染色体分离之间的内聚力的维持需要一个积极的内聚复兴计划,该计划在减数分裂前期产生新的内聚联系。
    In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here, we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Cohesin along the arms of oocyte chromosomes appears to completely turn over within a 2-day window during prophase, whereas replacement is less extensive at centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    控制基因转录的细胞过程的复杂景观,染色质组织,基因组稳定性是一个令人着迷的研究领域。维持这种微妙平衡的关键角色是合众情结,具有多方面作用的分子机器。这篇综述对这些复杂的联系及其对各种人类疾病的重大影响进行了深入的探索。
    The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多亚基SMC复合物的最突出代表,凝聚素和凝集素,最著名的是有丝分裂染色体的结构成分。事实证明,这些复合物,以及它们的细菌同源物,是分子马达,这些复合物沿DNA线的ATP依赖性运动导致DNA环的形成。近年来,我们目睹了SMC依赖的DNA循环过程中雪崩般的数据积累,也称为环挤出。这篇综述简要总结了当前对粘附素依赖性挤压在细胞生理学中的位置和作用的理解,并提出了许多模型,以最引人注目的方式描述了挤压的潜在分子机制。我们以讨论粘附蛋白挤出DNA环的能力如何在机械上与其参与姐妹染色单体内聚的关系来结束评论。
    The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    长线性基因组DNA分子的精确复制和分离与许多纯机械问题有关。SMC复合物是细胞机制的关键组成部分,可确保在分裂过程中姐妹染色体的缺失和基因组DNA的压缩。Cohesin,一种重要的真核SMC复合物,具有典型的环结构,具有亚基间孔,DNA分子可以穿过该孔。粘附素进行这种DNA拓扑捕获的能力对于姐妹染色单体的复制后缔合现象至关重要,这通常被称为内聚。最近,很明显,cohesin和其他SMC复合物是,事实上,具有非常特殊的运动模式的马达蛋白,导致DNA环的形成。这个特定的过程被称为环挤出。挤压是凝聚的多种功能的基础,但是这个过程的分子机制仍然是个谜。在这次审查中,我们总结了粘附蛋白的分子结构数据,ATP水解循环对这种结构的影响,和已知的粘附蛋白-DNA相互作用模式。在不远的将来,这里提出的许多看似完全不同的事实可能会被纳入一个统一的循环挤压机械模型中。
    Accurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded. Capacity of cohesin for such topological entrapment of DNA is crucial for the phenomenon of post-replicative association of sister chromatids better known as cohesion. Recently, it became apparent that cohesin and other SMC complexes are, in fact, motor proteins with a very peculiar movement pattern leading to formation of DNA loops. This specific process has been called loop extrusion. Extrusion underlies multiple functions of cohesin beyond cohesion, but molecular mechanism of the process remains a mystery. In this review, we summarized the data on molecular architecture of cohesin, effect of ATP hydrolysis cycle on this architecture, and known modes of cohesin-DNA interactions. Many of the seemingly disparate facts presented here will probably be incorporated in a unified mechanistic model of loop extrusion in the not-so-distant future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    着丝粒是用于组装动子的支架,可确保细胞分裂过程中的染色体分离。脊椎动物着丝粒如何获得三维结构以实现其主要功能尚不清楚。使用超分辨率成像,capture-C,和聚合物建模,我们显示脊椎动物着丝粒在有丝分裂过程中被凝集素划分为两个亚结构域。二分结构在人类中发现,鼠标,和鸡细胞,因此是脊椎动物着丝粒的基本特征。超分辨率成像和电子层析成像显示,二分着丝粒组装二分动体,每个子域结合一个不同的微管束。Cohesin连接着丝粒子域,限制它们的分离,以响应主轴力,并避免使用merotelic动子-主轴附件。癌细胞分裂过程中的滞后染色体通常具有微晶体附着,其中着丝粒亚结构域被分离并双向定位。我们的工作揭示了脊椎动物着丝粒生物学的一个基本方面,对理解保证忠实染色体分离的机制具有重要意义。
    Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CorneliadeLange综合征(CdLS)是一种罕见的先天性多系统发育障碍。临床表现变化很大,但是经典的表型,以独特的颅面特征为特征,出生前和出生后生长迟缓,四肢减少缺陷,多毛症和智力障碍可以与非经典表型区分开来,通常更温和,更难诊断。此外,临床特征与其他神经发育障碍的特征重叠,因此,使用共识临床标准和人工智能工具可能有助于确认诊断。NIPBL的致病变异,编码一种与粘附蛋白复合物相关的蛋白质,已经在超过60%的患者中被确认,与该复合物相关的其他基因中的致病变异还有15%:SMC1A,SMC3、RAD21和HDAC8。大规模测序的技术进步允许描述其他基因(BRD4,ANKRD11,MAU2),但15%的个体缺乏分子诊断以及该综合征的实质性临床异质性提示可能涉及其他基因和机制。虽然没有治愈性的治疗,儿科医生应该注意对症/姑息治疗.经典SCdL的主要并发症是胃食管反流(GER),应该及早治疗。
    Cornelia de Lange syndrome (CdLS) is a rare congenital developmental disorder with multisystemic involvement. The clinical presentation is highly variable, but the classic phenotype, characterized by distinctive craniofacial features, pre- and postnatal growth retardation, extremity reduction defects, hirsutism and intellectual disability can be distinguished from the nonclassic phenotype, which is generally milder and more difficult to diagnose. In addition, the clinical features overlap with those of other neurodevelopmental disorders, so the use of consensus clinical criteria and artificial intelligence tools may be helpful in confirming the diagnosis. Pathogenic variants in NIPBL, which encodes a protein related to the cohesin complex, have been identified in more than 60% of patients, and pathogenic variants in other genes related to this complex in another 15%: SMC1A, SMC3, RAD21, and HDAC8. Technical advances in large-scale sequencing have allowed the description of additional genes (BRD4, ANKRD11, MAU2), but the lack of molecular diagnosis in 15% of individuals and the substantial clinical heterogeneity of the syndrome suggest that other genes and mechanisms may be involved. Although there is no curative treatment, there are symptomatic/palliative treatments that paediatricians should be aware of. The main medical complication in classic SCdL is gastro-esophageal reflux (GER), which should be treated early.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    众所周知,基于16亚基的组成型着丝粒相关网络(CCAN)的内部动粒将着丝粒染色质连接到纺锤体结合的外部动粒。这里,我们报告了内部动粒在直接调节着丝粒上的姐妹染色单体内聚力中的非规范作用。我们提供生化,X射线晶体结构,和细胞内异位定位证据表明内部动粒直接结合粘附素,一种环状多亚基复合物,将姐妹染色单体从S期保持在一起,直到后期开始。这种相互作用是通过将CCAN的5亚基CENP-OPQUR亚复合物与粘附蛋白的Scc1-SA2亚复合物结合来介导的。CENP-OPQUR复合物的CENP-U亚基的突变消除了其与Scc1和SA2之间的复合界面的结合,从而削弱了着丝粒的内聚力,导致姐妹染色单体在延迟中期过早分离。我们进一步表明,CENP-U与粘附素释放因子Wapl竞争结合Scc1-SA2的界面,并且可以通过耗尽Wapl来绕过CENP-U的内聚保护作用。一起来看,这项研究揭示了一个内在体结合的粘附蛋白池,增强了着丝粒姐妹染色单体的内聚力,以抵抗中期纺锤体的拉力。
    The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    编码粘附素复合物的基因的失活突变在广泛的人类癌症中是常见的。STAG2是最常见的突变亚基。在这里,我们报告了内生稳定修正的影响,天然发生的STAG2基因表达突变,3D基因组组织,染色质环,多形性胶质母细胞瘤(GBM)中的多梳信号传导。在两个GBM细胞系中,纠正他们的STAG2突变显著改变了所有表达基因的10%的表达。几乎所有高度调控的基因都受到STAG2的负调控(即,在STAG2突变细胞中表达更高),其中之一-HEPH-在未培养的GBM肿瘤中也受到STAG2的调节。虽然STAG2校正对3D基因组组织的大规模特征影响不大(A/B区室,TAD),STAG2校正确实改变了数千个单独的染色质环,其中一些控制相邻基因的表达。特异于STAG2突变细胞的环,受含有STAG1的粘附蛋白复合物的调节,非常大,支持先前的发现,即含有STAG1的粘附蛋白复合物比含有STAG2的粘附蛋白复合物具有更大的环挤压持续能力,并表明长环可能是STAG2突变癌症的一般特征。最后,STAG2突变激活Polycomb活性,导致H3K27me3标记增加,鉴定Polycomb信号传导是STAG2突变型GBM肿瘤治疗干预的潜在靶标。一起,这些发现阐明了STAG2调节基因的景观,A/B舱,染色质环,以及GBM中的路径,为STAG2肿瘤抑制机制在很大程度上仍然未知提供了重要线索。
    Inactivating mutations of genes encoding the cohesin complex are common in a wide range of human cancers. STAG2 is the most commonly mutated subunit. Here we report the impact of stable correction of endogenous, naturally occurring STAG2 mutations on gene expression, 3D genome organization, chromatin loops, and Polycomb signaling in glioblastoma multiforme (GBM). In two GBM cell lines, correction of their STAG2 mutations significantly altered the expression of ∼10% of all expressed genes. Virtually all the most highly regulated genes were negatively regulated by STAG2 (i.e., expressed higher in STAG2-mutant cells), and one of them-HEPH-was regulated by STAG2 in uncultured GBM tumors as well. While STAG2 correction had little effect on large-scale features of 3D genome organization (A/B compartments, TADs), STAG2 correction did alter thousands of individual chromatin loops, some of which controlled the expression of adjacent genes. Loops specific to STAG2-mutant cells, which were regulated by STAG1-containing cohesin complexes, were very large, supporting prior findings that STAG1-containing cohesin complexes have greater loop extrusion processivity than STAG2-containing cohesin complexes and suggesting that long loops may be a general feature of STAG2-mutant cancers. Finally, STAG2 mutation activated Polycomb activity leading to increased H3K27me3 marks, identifying Polycomb signaling as a potential target for therapeutic intervention in STAG2-mutant GBM tumors. Together, these findings illuminate the landscape of STAG2-regulated genes, A/B compartments, chromatin loops, and pathways in GBM, providing important clues into the largely still unknown mechanism of STAG2 tumor suppression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号