CoQ biosynthesis

CoQ 生物合成
  • 文章类型: Journal Article
    辅酶Q(CoQ)缺乏综合征通常使用外源性CoQ10以有限的功效治疗。CoQ10的低吸收和生物利用度以及疾病的临床异质性导致不良结果。这里,我们证明补充4-羟基苯甲酸(4HB),CoQ生物合成途径中苯醌环的前体,在CoQ缺乏的小鼠模型中完全挽救了多系统疾病和围产期致死性。4HB刺激Coq2突变小鼠组织中的内源性CoQ生物合成,使线粒体功能正常化并挽救心功能不全,水肿,神经发育迟缓.相比之下,外源性辅酶Q10补充不足以完全恢复表型。这种治疗方法可以转化为人类使用,如在COQ2中具有致病性变异的患者的皮肤成纤维细胞中的体外研究所证明的。该治疗方法延伸到以4HB的产生缺陷和CoQ生物合成的早期步骤以及继发性CoQ缺陷的情况为特征的其他病症。
    Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最初被确定为线粒体呼吸链的关键组成部分,辅酶Q(人体组织的CoQ或CoQ10)最近被发现对许多不同的氧化还原过程至关重要,不仅在线粒体中,但在其他细胞膜类型的其他地方。细胞依赖于内源性CoQ生物合成,而这种仍未完全理解的途径中的缺陷会导致原发性CoQ缺乏,一组以降低组织CoQ水平为特征的生化条件,这反过来又与功能缺陷有关。继发性CoQ缺陷可能是由与初级合成不直接相关的多种细胞功能障碍引起的。在这篇文章中,我们回顾了CoQ生物合成的最新知识,导致人体组织中CoQ10水平降低的缺陷及其相关临床表现。
    Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis. In this article, we review the current knowledge on CoQ biosynthesis, the defects leading to diminished CoQ10 levels in human tissues and their associated clinical manifestations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    辅酶Q10(CoQ10)是线粒体电子传递所必需的。CoQ10生物合成基因的突变导致原发性CoQ10缺乏症(PCoQD)并表现为线粒体疾病。通常说PCoQD患者可以通过口服CoQ10补充来治疗。为了测试这个,我们汇总了截至2022年5月所有描述PCoQD患者的研究.我们排除了没有CoQ10治疗数据的研究,或者有效性描述不足。在303名PCoQD患者中,我们保留了89个案例,其中24例报告辅酶Q10治疗后有所改善(27.0%)。在五个案例中,据报道,患者的病情在停止辅酶Q10治疗后恶化。共济失调严重程度改善12例,蛋白尿严重程度改善5例。仅报告了4名被描述为响应的患者的改善的主观描述。所有报告的反应仅是一些症状的部分改善。对于PCoQD患者,补充辅酶Q10是替代疗法。然而,只有非常微弱的证据证明这种治疗的疗效。我们的发现,因此,建议在寻求证明CoQ10广泛用于治疗任何疾病或作为膳食补充剂时需要谨慎。
    Coenzyme Q10 (CoQ10 ) is necessary for mitochondrial electron transport. Mutations in CoQ10 biosynthetic genes cause primary CoQ10 deficiency (PCoQD) and manifest as mitochondrial disorders. It is often stated that PCoQD patients can be treated by oral CoQ10 supplementation. To test this, we compiled all studies describing PCoQD patients up to May 2022. We excluded studies with no data on CoQ10 treatment, or with insufficient description of effectiveness. Out of 303 PCoQD patients identified, we retained 89 cases, of which 24 reported improvements after CoQ10 treatment (27.0%). In five cases, the patient\'s condition was reported to deteriorate after halting of CoQ10 treatment. 12 cases reported improvement in the severity of ataxia and 5 cases in the severity of proteinuria. Only a subjective description of improvement was reported for 4 patients described as responding. All reported responses were partial improvements of only some symptoms. For PCoQD patients, CoQ10 supplementation is replacement therapy. Yet, there is only very weak evidence for the efficacy of the treatment. Our findings, thus, suggest a need for caution when seeking to justify the widespread use of CoQ10 for the treatment of any disease or as dietary supplement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人体细胞能够感知和适应氧水平的变化。历史上,该领域的许多研究集中在缺氧诱导因子(HIF)信号和活性氧(ROS)上。这里,我们以21%的比例进行全基因组CRISPR生长筛选,5%,和1%的氧气,以系统地识别在高氧(213个基因)或低氧(109个基因)中具有相对适应性缺陷的基因敲除,大多数没有已知的连接到HIF或ROS。许多线粒体途径的敲除被认为是必不可少的,包括复合物I和Fe-S生物合成中的酶,在低氧条件下生长相对良好,因此受到缺氧的缓冲。相比之下,在某些细胞类型中,脂质生物合成和过氧化物酶体基因的敲除仅在低氧下会导致适应性缺陷。我们的资源提名了严重程度可能受氧气调节的遗传疾病,并将数百个基因与氧气稳态联系起来。
    Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    UbiG和Coq3(真核生物中的直向同源物)是SAM-MTases(S-腺苷甲硫氨酸依赖性甲基转移酶),其催化从原核生物到真核生物的CoQ生物合成中的两个O-甲基化步骤。然而,它们发挥作用的详细分子机制仍然难以捉摸。在本论文中,我们报道UbiG/Coq3定义了一类新的膜结合蛋白。大肠杆菌UbiG与含有PG(磷脂酰甘油)或CL(心磷脂,或二磷脂酰甘油),大肠杆菌质膜的两种主要脂质成分,而人类和酵母Coq3对富含CL的脂质体表现出强烈的偏好,线粒体膜的特征脂质。来自大肠杆菌的UbiG的晶体结构以2.1µ(1µ=0.1nm)分辨率确定。该结构表现出典型的I类SAM-MTase折叠,有几种变化,包括链β5和螺旋α10之间的独特插入。这种插入是高度保守的并且是膜结合所必需的。关键残基的突变使得UbiG不能在体外有效结合脂质体,并且突变体不能在体内挽救ΔubiG菌株的表型。一起来看,我们的结果揭示了UbiG/Coq3蛋白的新生化功能。
    UbiG and Coq3 (orthologue in eukaryotes) are SAM-MTases (S-adenosylmethionine-dependent methyltransferases) that catalyse both O-methylation steps in CoQ biosynthesis from prokaryotes to eukaryotes. However, the detailed molecular mechanism by which they function remains elusive. In the present paper, we report that UbiG/Coq3 defines a novel class of membrane-binding proteins. Escherichia coli UbiG binds specifically to liposomes containing PG (phosphatidylglycerol) or CL (cardiolipin, or diphosphatidylglycerol), two major lipid components of the E. coli plasma membrane, whereas human and yeast Coq3 display a strong preference for liposomes enriched with CL, a signature lipid of the mitochondrial membrane. The crystal structure of UbiG from E. coli was determined at 2.1 Å (1 Å = 0.1 nm) resolution. The structure exhibits a typical Class I SAM-MTase fold with several variations, including a unique insertion between strand β5 and helix α10. This insertion is highly conserved and is required for membrane binding. Mutation of the key residues renders UbiG unable to efficiently bind liposome in vitro and the mutant fails to rescue the phenotype of ΔubiG strain in vivo. Taken together, our results shed light on a novel biochemical function of the UbiG/Coq3 protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号