Circuit mapping

电路映射
  • 文章类型: Journal Article
    腹侧苍白球(VP)是奖励回路中的中心枢纽,具有不同的预测,这些预测具有不同的行为角色,主要归因于与下游目标的连通性。然而,不同的VP预测可能代表,就像纹状体一样,不同的神经元群体不仅仅是连通性。在这项研究中,我们在两种性别的小鼠中对VP的四个主要投影进行了多模态解剖-到下丘脑外侧(VP→LH),腹侧被盖区(VP→VTA),外侧(VP→LHb)和中背丘脑(VP→MDT)-具有生理,解剖学,遗传和行为工具。我们还测试了接收来自伏隔核(NAc)中等多刺神经元(MSN)的输入的VP神经元之间的生理差异,这些神经元表达D1(D1-MSN)或D2(D2-MSN)多巴胺受体。我们表明,每个VP投影1)在可卡因条件位置偏好(CPP)测试中受到抑制时,会对性能产生不同的影响;2)使用狂犬病逆行标记接收不同的输入模式;3)使用RNA测序显示差异表达的基因;4)使用全细胞膜片钳在兴奋性和突触输入特征方面具有投射特异性特征。VP→LH和VP→VTA投影对CPP有不同的影响,并且在电路跟踪实验中显示出低重叠,当VP→VTA神经元接收更多纹状体输入,而VP→LH神经元接收更多嗅觉输入。此外,VP→VTA神经元的兴奋性较低,而VP→LH神经元的兴奋性较平均VP神经元高,差异主要由D2-MSN响应神经元驱动。因此,VP→VTA和VP→LH神经元可能代表了大部分不同的VP神经元群体。重要性陈述神经科学中的许多现代研究将不同的行为角色分配给特定的电路。这些行为角色通常归因于两个大脑区域之间的连接,尽管不同的预测在其他方面也可能不同,并且可能源于,就像在纹状体里,来自大部分独立的神经元群体。腹侧苍白球(VP)是奖励系统的主要结构,可将投影发送到许多不同的目标。在这项工作中,我们首次对VP的四个主要输出进行了全面的多峰表征,有证据表明预测之间存在各种差异。我们还建议其中两个预测,腹侧被盖区和下丘脑外侧起源于很大程度上独立的神经元群体。
    The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    高密度探针允许在整个大脑回路中同时记录许多神经元的电生理,但无法确定每个记录的神经元的细胞类型。这里,我们开发了一种策略来从清醒动物的细胞外记录中识别细胞类型,开辟途径,揭示具有不同功能的神经元的计算作用,分子,和解剖学属性。我们使用小脑作为测试平台结合光遗传学激活和药理学,以生成Purkinje细胞的电生理特性的策划的地面实况库,分子层中间神经元,高尔基细胞,苔藓纤维.我们训练半监督深度学习分类器,该分类器基于波形预测细胞类型,准确率超过95%。排放统计,和记录的神经元的层。分类器的预测与使用不同探针的记录的专家分类一致,在不同的实验室,来自功能不同的小脑区域,跨越动物物种。我们的方法为从整个大脑的细胞外记录中识别细胞类型提供了一般蓝图。
    High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but don\'t reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals, revealing the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetic activation and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep-learning classifier that predicts cell types with greater than 95% accuracy based on waveform, discharge statistics, and layer of the recorded neuron. The classifier\'s predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across animal species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously-recorded cell types during behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    映射产生双侧强直-阵挛性癫痫发作的神经元回路对于理解癫痫发作传播的一般原理和改变由于双侧运动性癫痫发作造成的死亡和伤害的风险至关重要。我们使用了过去十年来开发的新技术来研究这些电路。我们提出了一个一般假设,即在中尺度,癫痫发作遵循癫痫发作焦点的解剖学预测,优先激活更多的兴奋神经元。
    Mapping neuronal circuits that generate focal to bilateral tonic-clonic seizures is essential for understanding general principles of seizure propagation and modifying the risk of death and injury due to bilateral motor seizures. We used novel techniques developed over the past decade to study these circuits. We propose the general hypothesis that at the mesoscale, seizures follow anatomical projections of the seizure focus, preferentially activating more excitable neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在哺乳动物皮层中,前馈兴奋性连接招募前馈抑制。这通常由小白蛋白(PV+)中间神经元携带,它可能密集地连接到局部金字塔(Pyr)神经元。这种抑制作用是不分青红皂白地影响所有局部兴奋性细胞还是针对特定的子网络是未知的。这里,我们测试了前馈抑制是如何通过使用2通道电路映射来激发皮层和丘脑输入到PV中间神经元和Pyr神经元到小鼠运动皮层的。单个Pyr和PV+神经元接收来自皮质和丘脑的输入。连接的PV中间神经元和兴奋性Pyr神经元对接收相关的皮质和丘脑输入。虽然PV中间神经元更有可能与Pyr神经元形成局部连接,Pyr神经元更有可能与抑制它们的PV中间神经元形成相互联系。这表明Pyr和PV合奏可能是根据它们的本地和远程连接来组织的,支持用于信号转导和处理的本地子网络的想法的组织。因此,M1的兴奋性输入可以以特定的模式靶向抑制网络,该模式允许将前馈抑制募集到皮质柱内的特定子网络。意义陈述进入运动皮质(M1)的感觉信息激发神经元计划和控制运动。此输入还招募前馈抑制。抑制是否不加区别地抑制皮质兴奋或形成特定的子网络尚不清楚。促进不同运动的电路中连通性的特定差异可能有助于电机控制。我们表明,连接对的锥体(Pyr)兴奋性神经元和小白蛋白(PV)抑制性中间神经元的输入幅度比非连接对的相关性更强,表明中间神经元整合到特定的皮层子网络中。尽管这些细胞之间有稀疏的连接,锥体神经元更有可能(3倍)激发与它们连接的PV+细胞。因此,抑制整合到运动皮层的特定电路中,暗示分开,存在用于募集前馈抑制的特定电路。
    In mammalian cortex, feedforward excitatory connections recruit feedforward inhibition. This is often carried by parvalbumin (PV+) interneurons, which may densely connect to local pyramidal (Pyr) neurons. Whether this inhibition affects all local excitatory cells indiscriminately or is targeted to specific subnetworks is unknown. Here, we test how feedforward inhibition is recruited by using two-channel circuit mapping to excite cortical and thalamic inputs to PV+ interneurons and Pyr neurons to mouse primary vibrissal motor cortex (M1). Single Pyr and PV+ neurons receive input from both cortex and thalamus. Connected pairs of PV+ interneurons and excitatory Pyr neurons receive correlated cortical and thalamic inputs. While PV+ interneurons are more likely to form local connections to Pyr neurons, Pyr neurons are much more likely to form reciprocal connections with PV+ interneurons that inhibit them. This suggests that Pyr and PV ensembles may be organized based on their local and long-range connections, an organization that supports the idea of local subnetworks for signal transduction and processing. Excitatory inputs to M1 can thus target inhibitory networks in a specific pattern which permits recruitment of feedforward inhibition to specific subnetworks within the cortical column.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    运动皮层(M1)的皮质内抑制调节运动和运动学习。如果皮质和丘脑输入针对不同层的不同抑制性细胞类型,那么这些传入可能在调节M1产量方面发挥不同的作用。用两性的老鼠,我们量化了两个主要类别的M1中间神经元的输入,小白蛋白+(PV)细胞和生长抑素+(SOM)细胞,使用单突触狂犬病追踪。然后,我们根据感觉皮层和丘脑的突触强度比较了解剖和功能连接。功能上,每个输入神经支配M1中间神经元具有独特的层状轮廓。不同类型的中间神经元在不同的情况下兴奋,互补的方式,表明前馈抑制通过不同的电路选择性地进行。具体来说,体感皮层(S1)主要输入上层的PV神经元(L2/3),而中间层的SOM神经元(L5)。体感丘脑(PO)输入靶向中间层(L5)中的PV+神经元。与感觉皮质区域相反,丘脑对SOM+神经元的输入相当于PV+神经元。因此,长程兴奋性输入以区域和细胞类型特异性方式靶向抑制性神经元,与对相邻锥体细胞的输入形成对比。与在皮质中提供通用抑制音的前馈抑制相反,电路被选择性地组织以招募与进入的兴奋电路相匹配的抑制。重要声明:运动皮层(M1)整合感觉信息和额叶皮层输入来计划和控制运动。虽然描述了兴奋性细胞的输入,这些输入驱动特定类型的M1中间神经元的突触电路是未知的。狂犬病追踪和突触强度生理定量的解剖学结果表明,两种主要类型的抑制性细胞(PV和SOM中间神经元)都接受大量的皮质和丘脑输入,与感觉区域的中间神经元相反(丘脑输入强烈偏爱PV中间神经元)。Further,研究的每个输入以不同的方式靶向PV+和SOM+中间神经元,暗示分开,存在用于募集前馈抑制的特定电路。
    Intracortical inhibition in motor cortex (M1) regulates movement and motor learning. If cortical and thalamic inputs target different inhibitory cell types in different layers, then these afferents may play different roles in regulating M1 output. Using mice of both sexes, we quantified input to two main classes of M1 interneurons, parvalbumin+ (PV+) cells and somatostatin+ (SOM+) cells, using monosynaptic rabies tracing. We then compared anatomic and functional connectivity based on synaptic strength from sensory cortex and thalamus. Functionally, each input innervated M1 interneurons with a unique laminar profile. Different interneuron types were excited in a distinct, complementary manner, suggesting feedforward inhibition proceeds selectively via distinct circuits. Specifically, somatosensory cortex (S1) inputs primarily targeted PV+ neurons in upper layers (L2/3) but SOM+ neurons in middle layers (L5). Somatosensory thalamus [posterior nucleus (PO)] inputs targeted PV+ neurons in middle layers (L5). In contrast to sensory cortical areas, thalamic input to SOM+ neurons was equivalent to that of PV+ neurons. Thus, long-range excitatory inputs target inhibitory neurons in an area and a cell type-specific manner, which contrasts with input to neighboring pyramidal cells. In contrast to feedforward inhibition providing generic inhibitory tone in cortex, circuits are selectively organized to recruit inhibition matched to incoming excitatory circuits.SIGNIFICANCE STATEMENT M1 integrates sensory information and frontal cortical inputs to plan and control movements. Although inputs to excitatory cells are described, the synaptic circuits by which these inputs drive specific types of M1 interneurons are unknown. Anatomical results with rabies tracing and physiological quantification of synaptic strength shows that two main classes of inhibitory cells (PV+ and SOM+ interneurons) both receive substantial cortical and thalamic input, in contrast to interneurons in sensory areas (where thalamic input strongly prefers PV+ interneurons). Further, each input studied targets PV+ and SOM+ interneurons in a different fashion, suggesting that separate, specific circuits exist for recruitment of feedforward inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了理解神经元回路的功能,理清网络内的连接模式是至关重要的。然而,目前用于探索连接的大多数工具的吞吐量都很低,低选择性,或有限的可访问性。这里,我们报告了一种改进的包装系统的开发,用于生产高度嗜神经的RVdGenvA-CVS-N2c狂犬病病毒载体,在没有背景污染的情况下,产生的滴度要高出几个数量级,在生产时间的一小部分,同时保持跨突触标记的效率。随着生产管道,我们开发了\'启动\'AAV和双顺反子RVdG-CVS-N2c矢量套件,能够从广泛的神经元群体中进行逆行标记,为不同的实验要求量身定制。我们通过发现小鼠海马结构中隐藏的局部和远端抑制连接,并通过对皮质微电路的功能特性进行为期数周的成像,证明了新系统的功能和灵活性。我们新颖的生产管道提供了一种方便的方法来产生新的狂犬病媒介,虽然我们的工具包灵活有效地扩展了当前的标签容量,在体外和体内操纵和成像相互连接的神经元回路的神经元活动。
    To understand the function of neuronal circuits, it is crucial to disentangle the connectivity patterns within the network. However, most tools currently used to explore connectivity have low throughput, low selectivity, or limited accessibility. Here, we report the development of an improved packaging system for the production of the highly neurotropic RVdGenvA-CVS-N2c rabies viral vectors, yielding titers orders of magnitude higher with no background contamination, at a fraction of the production time, while preserving the efficiency of transsynaptic labeling. Along with the production pipeline, we developed suites of \'starter\' AAV and bicistronic RVdG-CVS-N2c vectors, enabling retrograde labeling from a wide range of neuronal populations, tailored for diverse experimental requirements. We demonstrate the power and flexibility of the new system by uncovering hidden local and distal inhibitory connections in the mouse hippocampal formation and by imaging the functional properties of a cortical microcircuit across weeks. Our novel production pipeline provides a convenient approach to generate new rabies vectors, while our toolkit flexibly and efficiently expands the current capacity to label, manipulate and image the neuronal activity of interconnected neuronal circuits in vitro and in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黑质致密部(SNc)中的多巴胺能神经元在帕金森病中差异退化,腹侧区域比背侧区域退化更严重。与背侧神经元相比,SNc中的腹侧神经元具有明显的树突形态,电生理特性,以及与基底神经节的回路连接。这些特征塑造了腹侧SNc中的信息处理,并结构了纹状体神经回路中抑制和去抑制的平衡。在本文中,我回顾了基础研究和最近的工作,比较了腹侧和背侧SNc神经元的电路,并讨论了帕金森病早期腹侧神经元的丢失如何影响多巴胺信号的抑制和去抑制的整体平衡。
    Dopaminergic neurons in the substantia nigra pars compacta (SNc) differentially degenerate in Parkinson\'s Disease, with the ventral region degenerating more severely than the dorsal region. Compared with the dorsal neurons, the ventral neurons in the SNc have distinct dendritic morphology, electrophysiological characteristics, and circuit connections with the basal ganglia. These characteristics shape information processing in the ventral SNc and structure the balance of inhibition and disinhibition in the striatonigral circuitry. In this paper, I review foundational studies and recent work comparing the circuitry of the ventral and dorsal SNc neurons and discuss how loss of the ventral neurons early in Parkinson\'s Disease could affect the overall balance of inhibition and disinhibition of dopamine signals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    数十年的研究揭示了中脑多巴胺(DA)系统的显着复杂性,包括主要位于腹侧被盖区(VTA)和黑质致密部(SNc)的细胞。既不同质也不服务于奇异函数,相反,中脑DA系统由不同的细胞群体组成,这些细胞群体(1)接收不同的输入集,(2)分离前脑部位的项目,和(3)的特征在于独特的转录和生理特征。要了解这些差异与电路功能的关系,我们首先需要了解独特DA通路的解剖学连接,以及这种连接如何与DA依赖的动机行为相关.我们和其他人提供了中脑DA细胞几个亚群的输入输出关系的详细图,并探索了这些不同细胞群在指导行为输出中的作用。在这项研究中,我们将VTA输入和输出分析为高维数据集(10个输出,22个输入),部署计算技术非常适合在此类数据中找到可解释的模式。除了加强我们之前的结论,即VTA中的连通性取决于空间组织,我们的分析还揭示了一组升高到每个投影定义的VTADA细胞类型的输入。例如,VTADA→NAcLat细胞接受来自基底神经节输入的优先神经支配,而VTADA→杏仁核细胞优先接收来自跨VTA发送分布式输入的群体的输入,这恰好是与大脑压力回路相关的区域。此外,VTADA→NAcMed细胞接受腹中偏输入,包括来自视前区,腹侧苍白球,和背外侧膜,而VTADA→mPFC细胞是由hu骨和背中缝的显性输入定义的。我们还继续证明,可以使用腹侧中脑的投影结构来概括VTADA细胞的偏置输入逻辑,加强了我们的发现,即使用基于狂犬病(RABV)的电路映射确定的大多数输入差异反映了VTA内的投影原型。
    Decades of research have revealed the remarkable complexity of the midbrain dopamine (DA) system, which comprises cells principally located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Neither homogenous nor serving a singular function, the midbrain DA system is instead composed of distinct cell populations that (1) receive different sets of inputs, (2) project to separate forebrain sites, and (3) are characterized by unique transcriptional and physiological signatures. To appreciate how these differences relate to circuit function, we first need to understand the anatomical connectivity of unique DA pathways and how this connectivity relates to DA-dependent motivated behavior. We and others have provided detailed maps of the input-output relationships of several subpopulations of midbrain DA cells and explored the roles of these different cell populations in directing behavioral output. In this study, we analyze VTA inputs and outputs as a high dimensional dataset (10 outputs, 22 inputs), deploying computational techniques well-suited to finding interpretable patterns in such data. In addition to reinforcing our previous conclusion that the connectivity in the VTA is dependent on spatial organization, our analysis also uncovered a set of inputs elevated onto each projection-defined VTADA cell type. For example, VTADA→NAcLat cells receive preferential innervation from inputs in the basal ganglia, while VTADA→Amygdala cells preferentially receive inputs from populations sending a distributed input across the VTA, which happen to be regions associated with the brain\'s stress circuitry. In addition, VTADA→NAcMed cells receive ventromedially biased inputs including from the preoptic area, ventral pallidum, and laterodorsal tegmentum, while VTADA→mPFC cells are defined by dominant inputs from the habenula and dorsal raphe. We also go on to show that the biased input logic to the VTADA cells can be recapitulated using projection architecture in the ventral midbrain, reinforcing our finding that most input differences identified using rabies-based (RABV) circuit mapping reflect projection archetypes within the VTA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Transplantation in Parkinson\'s disease using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons is a promising future treatment option. However, many of the mechanisms that govern their differentiation, maturation, and integration into the host circuitry remain elusive. Here, we engrafted hESCs differentiated toward a ventral midbrain DA phenotype into the midbrain of a preclinical rodent model of Parkinson\'s disease. We then injected a novel DA-neurotropic retrograde MNM008 adeno-associated virus vector capsid, into specific DA target regions to generate starter cells based on their axonal projections. Using monosynaptic rabies-based tracing, we demonstrated for the first time that grafted hESC-derived DA neurons receive distinctly different afferent inputs depending on their projections. The similarities to the host DA system suggest a previously unknown directed circuit integration. By evaluating the differential host-to-graft connectivity based on projection patterns, this novel approach offers a tool to answer outstanding questions regarding the integration of grafted hESC-derived DA neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In this issue of Neuron, Petersen et al. (2021) introduce CellExplorer, an open-source tool to integrate neurophysiological metrics of neuronal activity from circuits to behavior. Together with other neuroinformatic resources, it may facilitate community-based multidisciplinary characterization of brain cell types.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号