Chromosome segregation

染色体分离
  • 文章类型: Journal Article
    miR-31是一种高度保守的microRNA,在细胞增殖中起着至关重要的作用。迁移和分化。我们发现miR-31及其一些经过验证的靶标富集在分裂的海胆胚胎和哺乳动物细胞的有丝分裂纺锤体上。利用海胆胚胎,我们发现miR-31抑制导致发育延迟与细胞骨架和染色体缺陷增加相关.我们确定miR-31直接抑制几种肌动蛋白重塑转录本,包括β-肌动蛋白,Gelsolin,Rab35和Fascin.Fascin的从头翻译发生在海胆胚胎和哺乳动物细胞的有丝分裂纺锤体。重要的是,miR-31抑制导致在分裂的海胆胚胎的纺锤体上新翻译的Fascin的显著增加。Fascin转录本被迫异位定位到细胞膜和翻译导致显著的发育和染色体分离缺陷,强调miR-31在有丝分裂纺锤体调节局部翻译以确保正确的细胞分裂的重要性。此外,miR-31介导的有丝分裂纺锤体的转录后调控可能是有丝分裂的进化保守调控范式。
    miR-31 is a highly conserved microRNA that plays crucial roles in cell proliferation, migration and differentiation. We discovered that miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeletal and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, including β-actin, Gelsolin, Rab35 and Fascin. De novo translation of Fascin occurs at the mitotic spindle of sea urchin embryos and mammalian cells. Importantly, miR-31 inhibition leads to a significant a increase of newly translated Fascin at the spindle of dividing sea urchin embryos. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, highlighting the importance of the regulation of local translation by miR-31 at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    精确的染色体分离需要微管附着在着丝粒上,表观遗传学定义为CENP-A核小体的富集。在DNA复制过程中,CENP-A核小体经历稀释。为了保持着丝粒的身份,CENP-A的正确数量必须以Mis18复合物(Mis18α-Mis18β-Mis18BP1)协调的细胞周期控制方式恢复。我们在此证明,PLK1通过识别Mis18α(Ser54)和Mis18BP1(Thr78和Ser93)的自引发磷酸化通过其Polo-box结构域与Mis18复合物相互作用。破坏这些磷酸化会干扰CENP-A伴侣HJURP的着丝粒募集和新的CENP-A负载。生化和功能分析表明,激活Mis18α-Mis18β并促进Mis18复合物-HJURP相互作用需要Mis18α和PLK1结合的磷酸化。因此,我们的研究揭示了支持PLK1在确保着丝粒精确遗传中的许可作用的关键分子事件.
    Accurate chromosome segregation requires the attachment of microtubules to centromeres, epigenetically defined by the enrichment of CENP-A nucleosomes. During DNA replication, CENP-A nucleosomes undergo dilution. To preserve centromere identity, correct amounts of CENP-A must be restored in a cell cycle-controlled manner orchestrated by the Mis18 complex (Mis18α-Mis18β-Mis18BP1). We demonstrate here that PLK1 interacts with the Mis18 complex by recognizing self-primed phosphorylations of Mis18α (Ser54) and Mis18BP1 (Thr78 and Ser93) through its Polo-box domain. Disrupting these phosphorylations perturbed both centromere recruitment of the CENP-A chaperone HJURP and new CENP-A loading. Biochemical and functional analyses showed that phosphorylation of Mis18α and PLK1 binding were required to activate Mis18α-Mis18β and promote Mis18 complex-HJURP interaction. Thus, our study reveals key molecular events underpinning the licensing role of PLK1 in ensuring accurate centromere inheritance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    减数分裂是有性生殖的一个关键过程,细胞分裂过程中的错误会显著影响生育力。成功的减数分裂依赖于参与DNA复制的众多基因的协调作用,断线,随后重新加入。DNA拓扑异构酶通过调节DNA拓扑结构发挥着至关重要的作用,缓解复制和转录过程中的紧张。为了阐明DNA拓扑异构酶1α(AtTOP1α)在拟南芥雄性生殖发育中的特定功能,我们研究了拟南芥花蕾的减数分裂细胞分裂。结合细胞学和生化技术,我们的目的是揭示AtTOP1α对减数分裂的新贡献。我们的结果表明,缺乏AtTOP1α会导致减数分裂过程中的染色质行为异常。具体来说,top1α1突变体在减数分裂早期显示出改变的异染色质分布和聚集的着丝粒信号。此外,该突变体表现出45srDNA信号分布的破坏和中期I期间chiasma形成的频率降低,基因交换的关键阶段.此外,atm-2×top1α1双突变体表现出更严重的减数分裂缺陷,包括不完全的突触,DNA片段化,和polyads的存在。这些观察结果共同表明,AtTOP1α在确保减数分裂的准确进展中起着关键作用,促进同源染色体交叉形成,并可能在拟南芥小孢子母细胞中与突变的共通DNA修复途径中起作用。
    Meiosis is a critical process in sexual reproduction, and errors during this cell division can significantly impact fertility. Successful meiosis relies on the coordinated action of numerous genes involved in DNA replication, strand breaks, and subsequent rejoining. DNA topoisomerase enzymes play a vital role by regulating DNA topology, alleviating tension during replication and transcription. To elucidate the specific function of DNA topoisomerase 1α ( A t T O P 1 α ) in male reproductive development of Arabidopsis thaliana, we investigated meiotic cell division in Arabidopsis flower buds. Combining cytological and biochemical techniques, we aimed to reveal the novel contribution of A t T O P 1 α to meiosis. Our results demonstrate that the absence of A t T O P 1 α leads to aberrant chromatin behavior during meiotic division. Specifically, the top1α1 mutant displayed altered heterochromatin distribution and clustered centromere signals at early meiotic stages. Additionally, this mutant exhibited disruptions in the distribution of 45s rDNA signals and a reduced frequency of chiasma formation during metaphase I, a crucial stage for genetic exchange. Furthermore, the atm-2×top1α1 double mutant displayed even more severe meiotic defects, including incomplete synapsis, DNA fragmentation, and the presence of polyads. These observations collectively suggest that A t T O P 1 α plays a critical role in ensuring accurate meiotic progression, promoting homologous chromosome crossover formation, and potentially functioning in a shared DNA repair pathway with ATAXIA TELANGIECTASIA MUTATED (ATM) in Arabidopsis microspore mother cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    动子形成染色体和纺锤体微管之间的界面,因此受到复杂调节电路的严格控制。AuroraB激酶通过使不适当的动核-微管附件不稳定并将附件状态中继到纺锤体组装检查点,在该电路中起着核心作用。有趣的是,极光B即使在动体中也是保守的,一组早期分支的真核生物,具有一组独特的动粒蛋白。目前尚不清楚如何调节它们的动子以确保忠实的染色体分离。这里,我们在Brucei锥虫中显示,AuroraB活性通过不同的Bub1样蛋白KKT14的磷酸化来控制中期到后期的转变。KKT14的耗尽超过了AuroraB抑制导致的中期停滞,而非磷酸化KKT14的表达延迟后期开始。最后,我们证明,将AuroraB重新定位到外部动核足以促进有丝分裂的退出,但在后期会导致广泛的染色体不分离.我们的结果表明,AuroraB和KKT14参与了控制锥虫细胞周期进程的非常规电路。
    Kinetochores form the interface between chromosomes and spindle microtubules and are thus under tight control by a complex regulatory circuitry. The Aurora B kinase plays a central role within this circuitry by destabilizing improper kinetochore-microtubule attachments and relaying the attachment status to the spindle assembly checkpoint. Intriguingly, Aurora B is conserved even in kinetoplastids, a group of early-branching eukaryotes which possess a unique set of kinetochore proteins. It remains unclear how their kinetochores are regulated to ensure faithful chromosome segregation. Here, we show in Trypanosoma brucei that Aurora B activity controls the metaphase-to-anaphase transition through phosphorylation of the divergent Bub1-like protein KKT14. Depletion of KKT14 overrides the metaphase arrest resulting from Aurora B inhibition, while expression of non-phosphorylatable KKT14 delays anaphase onset. Finally, we demonstrate that re-targeting Aurora B to the outer kinetochore suffices to promote mitotic exit but causes extensive chromosome missegregation in anaphase. Our results indicate that Aurora B and KKT14 are involved in an unconventional circuitry controlling cell cycle progression in trypanosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类的发展依赖于正确的复制,维护和分离我们的基因蓝图。如何在胚胎谱系中监测这些过程,以及为什么基因组镶嵌在发育过程中会发生变化仍然未知。利用多能干细胞,我们确定了几个图案信号-包括WNT,BMP,和FGF-在S期收敛到DNA复制应激和损伤的调节,进而控制有丝分裂中的染色体分离保真度。我们证明了WNT和BMP信号可以防止过度的源发射,多能性中停滞的叉引起的DNA损伤和染色体不分离。染色体分离的细胞信号控制在谱系规范进入三个胚层期间下降,但在神经祖细胞中重新出现。特别是,我们发现神经发生因子FGF2在神经发生过程中诱导DNA复制应激介导的染色体不分离,这可以为发育中的大脑的染色体镶嵌性升高提供理论基础。我们的结果强调了形态发生原和细胞身份在基因组维持中的作用,这有助于哺乳动物发育过程中的体细胞镶嵌。
    Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    主轴双极化,微管团转变为双极纺锤体的过程,是准确染色体分离的先决条件。与有丝分裂细胞相反,人卵母细胞纺锤体双极化的过程和机制尚不清楚。在1800多个人类卵母细胞中使用高分辨率成像,我们揭示了在纺锤体双极化过程中形成的多极中间体的典型状态,并阐明了该过程的潜在机制。我们发现,在多个动粒团簇中形成的次要极点有助于多极中间体的产生。我们进一步确定了HAUS6,KIF11和KIF18A在纺锤体双极化中的重要作用,并在以卵母细胞或胚胎缺陷为特征的不育患者中确定了这些基因的突变。这些结果提供了对人卵母细胞纺锤体双极化的生理和病理机制的见解。
    Spindle bipolarization, the process of a microtubule mass transforming into a bipolar spindle, is a prerequisite for accurate chromosome segregation. In contrast to mitotic cells, the process and mechanism of spindle bipolarization in human oocytes remains unclear. Using high-resolution imaging in more than 1800 human oocytes, we revealed a typical state of multipolar intermediates that form during spindle bipolarization and elucidated the mechanism underlying this process. We found that the minor poles formed in multiple kinetochore clusters contribute to the generation of multipolar intermediates. We further determined the essential roles of HAUS6, KIF11, and KIF18A in spindle bipolarization and identified mutations in these genes in infertile patients characterized by oocyte or embryo defects. These results provide insights into the physiological and pathological mechanisms of spindle bipolarization in human oocytes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:染色体稳定性对于多能干细胞(PSC)的稳态和早期胚胎发育至关重要。当使用PSC作为原始材料时,染色体缺陷可能会增加再生医学中的致癌风险。然而,关于PSC染色体稳定性维持的详细机制尚不完全清楚。
    方法:在标准条件下培养小鼠胚胎干细胞(细胞系D3)和人胚胎干细胞(细胞系H9)。为了证实RetSat蛋白在PSC有丝分裂染色体上的负载,在小鼠胚胎成纤维细胞(MEFs)的PSC自发分化试验和iPSC重编程试验中进行免疫染色,分别。此外,qPCR,免疫沉淀,LC-MS/MS和免疫印迹法研究RetSat的表达,以及RetSat与共粘素/凝缩素组分的相互作用。进行RNA测序和畸胎瘤形成测定以评估具有RetSat缺失的小鼠胚胎干细胞的致癌风险。
    结果:我们报道了一个PSC高表达基因,RetSat,在染色体稳定中起着关键作用。我们鉴定了位于有丝分裂染色体上的RetSat蛋白,特别是在干细胞阳性细胞中,例如胚胎干细胞(ESC)和诱导多能干细胞(iPSC)。我们发现染色体不稳定,例如染色体桥接,当下调RetSat时,小鼠和人ESCs中的滞后和相间微核。RetSat敲除小鼠ESCs上调癌症相关基因通路,并在畸胎瘤形成试验中显示出较高的致瘤能力。机械上,我们证实RetSat与粘附素/凝缩素成分Smc1a和Nudcd2相互作用。RetSat缺失损害了Smc1a的染色体负荷剂量,Smc3和Nudcd2。
    结论:总之,我们报道RetSat是多能干细胞染色体凝聚的关键稳定剂.这突出了RetSat在早期胚胎发育中的关键作用,以及RetSat作为评估多能干细胞质量的有效生物标志物的潜在价值。
    BACKGROUND: Chromosome stability is crucial for homeostasis of pluripotent stem cells (PSCs) and early-stage embryonic development. Chromosomal defects may raise carcinogenic risks in regenerative medicine when using PSCs as original materials. However, the detailed mechanism regarding PSCs chromosome stability maintenance is not fully understood.
    METHODS: Mouse embryonic stem cells (line D3) and human embryonic stem cells (line H9) were cultured under standard conditions. To confirm the loading of RetSat protein on mitotic chromosomes of PSCs, immunostaining was performed in PSCs spontaneous differentiation assay and iPSC reprogramming assay from mouse embryonic fibroblasts (MEFs), respectively. In addition, qPCR, immunoprecipitation, LC-MS/MS and immunoblotting were used to study the expression of RetSat, and interactions of RetSat with cohesin/condensin components. RNA sequencing and teratoma formation assay was conducted to evaluate the carcinogenic risk of mouse embryonic stem cells with RetSat deletion.
    RESULTS: We reported a PSC high-expressing gene, RetSat, plays key roles in chromosome stabilization. We identified RetSat protein localizing onto mitotic chromosomes specifically in stemness positive cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We found dramatic chromosome instability, e.g. chromosome bridging, lagging and interphase micronuclei in mouse and human ESCs when down regulating RetSat. RetSat knock-out mouse ESCs upregulated cancer associated gene pathways, and displayed higher tumorigenic capacities in teratoma formation assay. Mechanistically, we confirmed that RetSat interacts with cohesin/condensin components Smc1a and Nudcd2. RetSat deletion impaired the chromosome loading dosage of Smc1a, Smc3 and Nudcd2.
    CONCLUSIONS: In summary, we reported RetSat to be a key stabilizer of chromosome condensation in pluripotent stem cells. This highlights the crucial roles of RetSat in early-stage embryonic development, and potential value of RetSat as an effective biomarker for assessing the quality of pluripotent stem cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在早期有丝分裂期间染色体的个体化和它们在细胞分裂退出时的聚集是确保真核染色体有效分离的两个关键转变。这两个过程都受到表面活性剂样蛋白Ki-67的调节,但是Ki-67如何实现这些直径功能仍然未知。这里,我们报告说,在人类细胞的后期,Ki-67从根本上从染色体驱避剂转变为染色体引诱剂。我们表明,有丝分裂退出过程中的Ki-67去磷酸化以及保守的碱性斑块的同时暴露会诱导RNA依赖性地在染色体表面上形成液状凝聚相。实验和粗粒度模拟支持染色体表面聚结的模型,由Ki-67和RNA的共缩合驱动,促进染色体的聚集。我们的研究揭示了Ki-67从表面活性剂到液体状凝聚相的转换如何在基因组分离过程中产生机械力,这是有丝分裂后重新建立核-细胞质区室化所必需的。
    The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells. We show that Ki-67 dephosphorylation during mitotic exit and the simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface. Experiments and coarse-grained simulations support a model in which the coalescence of chromosome surfaces, driven by co-condensation of Ki-67 and RNA, promotes clustering of chromosomes. Our study reveals how the switch of Ki-67 from a surfactant to a liquid-like condensed phase can generate mechanical forces during genome segregation that are required for re-establishing nuclear-cytoplasmic compartmentalization after mitosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    邻苯二甲酸二(2-乙基己基)酯是用作增塑剂以软化包括在医疗装置中的塑料和聚合物的最丰富的邻苯二甲酸酯。因为DEHP不与塑料化学结合并且容易从材料中浸出,所以可能发生人类和环境暴露。这种邻苯二甲酸酯被归类为生殖毒物和对人类可能的致癌物。基因毒性潜力仍有待澄清,但有迹象表明DEHP可能具有不良作用。为了进一步研究DEHP的遗传毒性,应用细胞松弛素阻滞微核试验并结合CREST染色来表征微核含量并获得对其基因毒性作用模式的见解.还分析了中期和晚期细胞中的染色体损伤,并研究了有丝分裂纺锤体的形态,以评估该细胞装置作为DEHP靶标的可能参与。我们的发现表明,DEHP诱导了微核频率以及CREST阳性微核频率的统计学显着增加。始终如一,观察到染色体分离的干扰和染色体数量变化的诱导,以及纺锤体形态的变化,多极纺锤体的形成和微管网络的改变。在没有代谢激活的情况下进行的实验表明,DEHP对染色体分离的直接作用不是由其代谢物介导的。总之,有一致的证据表明DEHP具有不良活性。确定了DEHP的遗传毒性活性阈值,披露对风险评估的可能影响。
    Bis(2-ethylhexyl) phthalate is the most abundant phthalate used as plasticizer to soften plastics and polymers included in medical devices. Human and environmental exposure may occur because DEHP is not chemically bound to plastics and can easily leach out of the materials. This phthalate is classified as reproductive toxicant and possible carcinogen to humans. The genotoxic potential has still to be clarified, but there are indications suggesting that DEHP may have aneugenic effects. To further investigate DEHP genotoxicity, the cytochalasin-block micronucleus assay was applied and combined with the CREST staining to characterise micronucleus content and gain insights on its genotoxic mode of action. Chromosomal damage was also analysed in metaphase and ana-telophase cells and the morphology of the mitotic spindle was investigated to evaluate the possible involvement of this cellular apparatus as a target of DEHP. Our findings indicated that DEHP induced a statistically significant increase in the frequency of micronuclei as well as in the frequency of CREST-positive micronuclei. Consistently, disturbance of chromosome segregation and induction of numerical chromosome changes were observed together with changes in spindle morphology, formation of multipolar spindles and alteration of the microtubule network. Experiments performed without metabolic activation demonstrated a direct action of DEHP on chromosome segregation not mediated by its metabolites. In conclusion, there is consistent evidence for an aneugenic activity of DEHP. A thresholded genotoxic activity was identified for DEHP, disclosing possible implications for risk assessment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The localization of the meiotic specific regulatory molecule Moa1 to the centromere is regulated by the kinetochore protein CENP-C, and participates in the cohesion of sister chromatids in the centromere region mediated by the cohesin Rec8. To examine the interaction of these proteins, we analyzed the interactions between Moa1 and Rec8, CENP-C by yeast two-hybrid assays and identified several amino acid residues in Moa1 required for the interaction with CENP-C and Rec8. The results revealed that the interaction between Moa1 and CENP-C is crucial for the Moa1 to participate in the regulation of monopolar attachment of sister kinetochores. However, mutation at S143 and T150 of Moa1, which are required for interaction with Rec8 in the two-hybrid assay, did not show significant defects. Mutations in amino acid residues may not be sufficient to interfere with the interaction between Moa1 and Rec8 in vivo. Further research is needed to determine the interaction domain between Moa1 and Rec8. This study revealed specific amino acid sites at which Moa1 affects the meiotic homologous chromosome segregation, providing a deeper understanding of the mechanism of meiotic chromosome segregation.
    减数分裂特异性调控分子Moa1定位到着丝粒受到动粒蛋白CENP-C的调控,同时Moa1参与黏连蛋白Rec8介导的着丝粒区域姐妹染色单体的黏连。为了研究这些蛋白质之间的相互作用,本研究利用酵母双杂交实验(yeast two-hybrid assay)测定分析了Moa1和CENP-C、Rec8之间的相互作用,并通过在Moa1中定点突变鉴定了与CENP-C和Rec8相互作用所需的一些氨基酸残基。实验结果表明,Moa1和CENP-C的相互作用对于Moa1参与调节姐妹动粒的单极附着很重要。然而,双杂交实验中与Rec8相互作用所需的Moa1的S143和T150突变没有显示出Moa1或Rec8功能的显著缺陷。这表明氨基酸残基的突变可能不足以干扰体内Moa1和Rec8之间的相互作用,需要进一步的研究来确定Moa1和Rec8的相互作用域。本研究揭示了影响减数分裂同源染色体分离的Moa1氨基酸位点,为减数分裂的染色体分离机制提供更深入的理解。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号