Chrd

Chrd
  • 文章类型: Journal Article
    前蛋白转化酶枯草杆菌蛋白酶/Kexin9型(PCSK9)促进低密度脂蛋白受体(LDLR)的降解。PCSK9的功能增益(GOF)变体显着影响脂质代谢,导致冠状动脉疾病(CAD),由于血浆低密度脂蛋白(LDL)升高。考虑到公共卫生问题,在全球范围内进行了大规模的基因组研究,为实施精准医疗行动提供了人群的遗传结构。然而,尽管基因组研究取得了进展,非欧洲人群在公共基因组数据库中的代表性仍然不足.尽管如此,我们在ABraOM数据库(巴西基因组变异)中发现了两个高频变异(rs505151和rs562556),来自在巴西最大城市进行的SABE队列研究,圣保罗.这里,我们通过分子动力学研究评估了这些变异体对WT的结构和动力学特征.我们通过微扰响应扫描(PRS)寻求基本的动态域间关系,并且发现了变体中前结构域和半胱氨酸-组氨酸-丰富结构域(CHRD)之间的动态关系的有趣变化。结果强调了前结构域在PCSK9动态中的关键作用以及取决于患者组基因型的新药开发的意义。
    The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptors (LDLR). Gain-of-function (GOF) variants of PCSK9 significantly affects lipid metabolism leading to coronary artery disease (CAD), owing to the raising the plasma low-density lipoprotein (LDL). Considering the public health matter, large-scale genomic studies have been conducted worldwide to provide the genetic architecture of populations for the implementation of precision medicine actions. Nevertheless, despite the advances in genomic studies, non-European populations are still underrepresented in public genomic data banks. Despite this, we found two high-frequency variants (rs505151 and rs562556) in the ABraOM databank (Brazilian genomic variants) from a cohort SABE study conducted in the largest city of Brazil, São Paulo. Here, we assessed the structural and dynamical features of these variants against WT through a molecular dynamics study. We sought fundamental dynamical interdomain relations through Perturb Response Scanning (PRS) and we found an interesting change of dynamical relation between prodomain and Cysteine-Histidine-Rich-Domain (CHRD) in the variants. The results highlight the pivotal role of prodomain in the PCSK9 dynamic and the implications for the development of new drugs depending on patient group genotype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    两个信号中心之间的相互抑制,Spemann组织者(背侧中胚层)和腹侧区域(中胚层和外胚层),共同调节脊椎动物胚胎的整体发育。每个中心表达直接控制靶基因转录的关键同源盒转录因子(TF)。Goosecoid(Gsc)是一种组织者(背侧中胚层)特异性TF,已知可诱导背侧命运并抑制腹侧/外胚层规格。Ventx1.1(Bmp信号的下游)诱导表皮谱系并抑制腹侧区域的背侧组织者特异性基因。Chordin(Chrd)是一种组织者特异性分泌的Bmp拮抗剂,其表达主要由Gsc激活。或者,在腹侧/表皮区域中,Bmp/Ventx1.1抑制了chrd表达。然而,Gsc和Ventx1.1介导的转录调控机制仍然难以捉摸。这里,我们发现,chrd启动子含有两个顺式作用反应元件,对Ventx1.1负反应,对Gsc正反应。在腹侧/外胚层区域,Ventx1.1直接与Ventx1.1反应元件(VRE)结合并抑制chrd转录。在组织者区域中,Gsc与Gsc反应元件(GRE)结合以激活chrd转录。Gsc介导的对chrd启动子的阳性反应完全依赖于另一个相邻的Wnt反应顺式作用元件(WRE),即TCF7(也称为Tcf1)结合元件。VRE的定点诱变,GRE,或WRE完全废除了Ventx1.1和GSC的抑制或激活活性,分别。ChIP-PCR结果证实了Ventx1.1和Gsc/Tcf7与VRE和GRE/WRE的直接结合,分别。这些结果表明,chrd表达被同源异型盒TFs相反地调节,非洲爪狼胚胎形成过程中的Ventx1.1和Gsc/Tcf7。
    The reciprocal inhibition between two signaling centers, the Spemann organizer (dorsal mesoderm) and ventral region (mesoderm and ectoderm), collectively regulate the overall development of vertebrate embryos. Each center expresses key homeobox transcription factors (TFs) that directly control target gene transcription. Goosecoid (Gsc) is an organizer (dorsal mesoderm)-specific TF known to induce dorsal fate and inhibit ventral/ectodermal specification. Ventx1.1 (downstream of Bmp signaling) induces the epidermal lineage and inhibits dorsal organizer-specific genes from the ventral region. Chordin (Chrd) is an organizer-specific secreted Bmp antagonist whose expression is primarily activated by Gsc. Alternatively, chrd expression is repressed by Bmp/Ventx1.1 in the ventral/epidermal region. However, the regulatory mechanisms underlying the transcription mediated by Gsc and Ventx1.1 remain elusive. Here, we found that the chrd promoter contained two cis-acting response elements that responded negatively to Ventx1.1 and positively to Gsc. In the ventral/ectodermal region, Ventx1.1 was directly bound to the Ventx1.1 response element (VRE) and inhibited chrd transcription. In the organizer region, Gsc was bound to the Gsc response elements (GRE) to activate chrd transcription. The Gsc-mediated positive response on the chrd promoter completely depended on another adjacent Wnt response cis-acting element (WRE), which was the TCF7 (also known as Tcf1) binding element. Site-directed mutagenesis of VRE, GRE, or WRE completely abolished the repressive or activator activity of Ventx1.1 and Gsc, respectively. The ChIP-PCR results confirmed the direct binding of Ventx1.1 and Gsc/Tcf7 to VRE and GRE/WRE, respectively. These results demonstrated that chrd expression is oppositely modulated by homeobox TFs, Ventx1.1, and Gsc/Tcf7 during the embryonic patterning of Xenopus gastrula.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Inhibition of the bone morphogenetic proteins (BMPs) is the primary step toward neuroectoderm formation in vertebrates. In this process, the Spemann organizer of the dorsal mesoderm plays a decisive role by secreting several extracellular BMP inhibitors such as Chordin (Chrd). Chrd physically interacts with BMP proteins and inhibits BMP signaling, which triggers the expression of neural-specific transcription factors (TFs), including Foxd4l1.1. Thus, Chrd induces in a BMP-inhibited manner and promotes neuroectoderm formation. However, the regulatory feedback mechanism of Foxd4l1.1 on mesodermal genes expression during germ-layer specification has not been fully elucidated. In this study, we investigated the regulatory mechanism of Foxd4l1.1 on chrd (a mesodermal gene). We demonstrate that Foxd4l1.1 inhibits chrd expression during neuroectoderm formation in two ways: First, Foxd4l1.1 directly binds to FRE (Foxd4l1.1 response elements) within the chrd promoter region to inhibit transcription. Second, Foxd4l1.1 physically interacts with Smad2 and Smad3, and this interaction blocks Smad2 and Smad3 binding to activin response elements (AREs) within the chrd promoter. Site-directed mutagenesis of FRE within the chrd(-2250) promoter completely abolished repressor activity of the Foxd4l1.1. RT-PCR and reporter gene assay results indicate that Foxd4l1.1 strongly inhibits mesoderm- and ectoderm-specific marker genes to maintain neural fate. Altogether, these results suggest that Foxd4l1.1 negatively regulates chrd transcription by dual mechanism. Thus, our study demonstrates the existence of precise reciprocal regulation of chrd transcription during neuroectoderm and mesoderm germ-layer specification in Xenopus embryos.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号