Chemodynamic therapy

化学动力学治疗
  • 文章类型: Journal Article
    光动力疗法(PDT)与化学动力疗法(CDT)相结合已被证明是提高癌症治疗效率的有希望的策略。因为两种模式之间产生的协同治疗作用。在这里,我们报道了一种基于三元NiCoTi-层状双氢氧化物(NiCoTi-LDH)纳米片的无机纳米剂,可实现高效的光动力/化学动力协同治疗。NiCoTi-LDH纳米片在酸性环境下表现出氧空位促进的电子-空穴分离和光生空穴诱导的不依赖O2的活性氧(ROS)的产生,实现原位pH响应性PDT。此外,由于光生电子引起的Co3和Co2之间的有效转换,NiCoTi-LDH纳米片通过Fenton反应催化H2O2释放羟基自由基(·OH),导致CDT。激光辐照增强了NiCoTi-LDH纳米片的催化能力,以促进ROS的产生,导致在pH6.5时比TiO2纳米颗粒更好的性能。体外和体内实验结果最终表明,NiCoTi-LDH纳米片加上辐射导致有效的细胞凋亡和对肿瘤生长的显着抑制。这项研究报告了一种新型的pH响应无机纳米试剂,具有氧空位促进的光动力/化学动力协同性能,为选择性消除肿瘤提供了一种潜在的有吸引力的临床策略。
    Combining photodynamic therapy (PDT) with chemodynamic therapy (CDT) has been proven to be a promising strategy to improve the treatment efficiency of cancer, because of the synergistic therapeutic effect arising between the two modalities. Herein, we report an inorganic nanoagent based on ternary NiCoTi-layered double hydroxide (NiCoTi-LDH) nanosheets to realize highly efficient photodynamic/chemodynamic synergistic therapy. The NiCoTi-LDH nanosheets exhibit oxygen vacancy-promoted electron-hole separation and photogenerated hole-induced O2-independent reactive oxygen species (ROS) generation under acidic circumstances, realizing in situ pH-responsive PDT. Moreover, due to the effective conversion between Co3+ and Co2+ caused by photogenerated electrons, the NiCoTi-LDH nanosheets catalyze the release of hydroxyl radicals (·OH) from H2O2 through Fenton reactions, resulting in CDT. Laser irradiation enhances the catalyzed ability of the NiCoTi-LDH nanosheets to promote the ROS generation, resulting in a better performance than TiO2 nanoparticles at pH 6.5. In vitro and in vivo experimental results show conclusively that NiCoTi-LDH nanosheets plus irradiation lead to efficient cell apoptosis and significant inhibition of tumor growth. This study reports a new pH-responsive inorganic nanoagent with oxygen vacancy-promoted photodynamic/chemodynamic synergistic performance, offering a potentially appealing clinical strategy for selective tumor elimination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究强调了FePt和Cu核壳纳米结构的创新应用,具有增加的晶格微应变,与Au单原子催化相结合,显着增强·OH生成,用于催化肿瘤治疗。核-壳与增加的晶格微应变和单原子结构的组合引入了羟基自由基(•OH)产生的意外增加。代表了增强活性氧的策略的关键进展。核壳结构的建立,FePt@Cu,展示了在OH生成中的协同作用,其超越了FePt和Cu单独的组合作用。将原子Au与FePt@Cu/Au结合进一步增强·OH产生。FePt@Cu和FePt@Cu/Au结构均促进O2→H2O2→•OH反应途径并催化类Fenton反应。DFT理论计算揭示了降低的O2吸附能量和能量势垒,晶格错配和单原子Au独特的催化活性促进了。值得注意的是,FePt@Cu/Au结构在抑制肿瘤方面具有显着的功效,并具有可生物降解的特性,允许从体内快速排泄。这种双重属性强调了其作为高效和安全的癌症治疗剂的潜力。
    This study emphasizes the innovative application of FePt and Cu core-shell nanostructures with increased lattice microstrain, coupled with Au single-atom catalysis, in significantly enhancing •OH generation for catalytic tumor therapy. The combination of core-shell with increased lattice microstrain and single-atom structures introduces an unexpected boost in hydroxyl radical (•OH) production, representing a pivotal advancement in strategies for enhancing reactive oxygen species. The creation of a core-shell structure, FePt@Cu, showcases a synergistic effect in •OH generation that surpasses the combined effects of FePt and Cu individually. Incorporating atomic Au with FePt@Cu/Au further enhances •OH production. Both FePt@Cu and FePt@Cu/Au structures boost the O2 → H2O2 → •OH reaction pathway and catalyze Fenton-like reactions. This enhancement is underpinned by DFT theoretical calculations revealing a reduced O2 adsorption energy and energy barrier, facilitated by lattice mismatch and the unique catalytic activity of single-atom Au. Notably, the FePt@Cu/Au structure demonstrates remarkable efficacy in tumor suppression and exhibits biodegradable properties, allowing for rapid excretion from the body. This dual attribute underscores its potential as a highly effective and safe cancer therapeutic agent.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    内源性过氧化氢的缺乏和细胞内酸度不足通常是限制化学动力学治疗(CDT)的两个重要因素。在这里,我们报告了一种谷胱甘肽响应性纳米药物,可以通过同时抑制双酶为CDT提供合适的环境。纳米药物是通过将新型硫化氢供体封装在由谷胱甘肽响应性两亲性聚合物组装的纳米胶束中来构建的。为了响应细胞内谷胱甘肽,纳米药物可以有效释放活性成分硫化氢,碳酸酐酶抑制剂和二茂铁。硫化氢可以通过抑制过氧化氢酶和增强糖酵解来增加过氧化氢和乳酸的浓度。碳酸酐酶抑制剂可通过抑制碳酸酐酶IX的功能进一步诱导肿瘤内酸中毒。因此,纳米药物可以为二茂铁介导的Fenton反应提供更有效的反应条件,以产生丰富的有毒羟基自由基。体内结果表明,增强的CDT和酸中毒的组合可以有效抑制肿瘤的生长。这种纳米药物的设计提供了一种有前途的双酶抑制策略,以增强CDT的抗肿瘤功效。
    Deficiency of endogenous hydrogen peroxide and insufficient intracellular acidity are usually two important factors limiting chemodynamic therapy (CDT). Here we report a glutathione-responsive nanomedicine that can provide a suitable environment for CDT by inhibiting dual-enzymes simultaneously. The nanomedicine is constructed by encapsulation of a novel hydrogen sulfide donor in nanomicelle assembled by glutathione-responsive amphiphilic polymer. In response to intracellular glutathione, the nanomedicine can efficiently release the active ingredients hydrogen sulfide, carbonic anhydrase inhibitor and ferrocene. The hydrogen sulfide can increase the concentrations of hydrogen peroxide and lactic acid by inhibiting catalase and enhancing glycolysis. The carbonic anhydrase inhibitor can further induce intratumoral acidosis by inhibiting the function of carbonic anhydrase IX. Therefore, the nanomedicine can provide more efficient reaction conditions for the ferrocene-mediated Fenton reaction to generate abundant toxic hydroxyl radicals. In vivo results show that the combination of enhanced CDT and acidosis can effectively inhibit tumor growth. This design of nanomedicine provides a promising dual-enzyme inhibiting strategy to enhance antitumor efficacy of CDT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着乳腺癌成为一个紧迫的全球健康挑战,其特点是发病率和地理差异不断上升,迫切需要创新的治疗策略。这项全面的研究导航纳米医学的景观,特别关注磁性纳米粒子(MNPs)的潜力,以磁铁矿(Fe3O4)为中心。MNPs,封装在生物相容性聚合物如二氧化硅被称为磁性二氧化硅纳米颗粒(MSN),用磷钨酸盐(PTA)增强化学动力学疗法(CDT)。PTA以其作为天然螯合剂和电子穿梭的双重作用而闻名,加快纳米颗粒内的三价铁(Fe3+)到亚铁(Fe2+)离子的电子转移。此外,引入基于蛋白质的电荷逆转纳米载体,如丝丝胶和麸质,以封装(MSN-PTA)纳米颗粒,为药物输送系统提供了一个动态的方面,为乳腺癌治疗的潜在变革提供了一个动态的方面。这项研究成功地制定和表征蛋白质包被的纳米胶囊,特别是MSN-PTA-SER,和MSN-PTA-GLU,具有药物输送应用的最佳物理化学属性。丝胶和面筋浓度的仔细优化导致精细调整的纳米粒子,展示均匀尺寸,负zeta电位增强,和显著的稳定性。各种分析,从动态光散射(DLS)和扫描电子显微镜(SEM)到透射电子显微镜(TEM),傅里叶变换红外光谱(FTIR),X射线衍射分析(XRD),和热重分析(TGA),提供对结构完整性和表面改性的见解。振动样品磁强计(VSM)分析强调超顺磁行为,将这些纳米胶囊定位为靶向药物递送的有希望的候选药物。体外评估显示MCF-7和Zr-75-1乳腺癌细胞中细胞活力的剂量依赖性抑制,强调MSN-PTA-SER和MSN-PTA-GLU的治疗潜力。表面电荷和pH依赖性细胞摄取的相互作用突出了这些纳米载体在肿瘤微环境中的强大稳定性和多功能性。为靶向药物递送和个性化纳米医学的进步铺平了道路。这项比较分析探讨了丝胶和面筋的适用性,为先进的发展开辟了一条有希望的道路,有针对性的,和有效的乳腺癌治疗。
    With breast cancer emerging as a pressing global health challenge, characterized by escalating incidence rates and geographical disparities, there is a critical need for innovative therapeutic strategies. This comprehensive research navigates the landscape of nanomedicine, specifically focusing on the potential of magnetic nanoparticles (MNPs), with magnetite (Fe3O4) taking center stage. MNPs, encapsulated in biocompatible polymers like silica known as magnetic silica nanoparticles (MSN), are augmented with phosphotungstate (PTA) for enhanced chemodynamic therapy (CDT). PTA is recognized for its dual role as a natural chelator and electron shuttle, expediting electron transfer from ferric (Fe3+) to ferrous (Fe2+) ions within nanoparticles. Additionally, protein-based charge-reversal nanocarriers like silk sericin and gluten are introduced to encapsulate (MSN-PTA) nanoparticles, offering a dynamic facet to drug delivery systems for potential revolutionization of breast cancer therapy. This study successfully formulates and characterizes protein-coated nanocapsules, specifically MSN-PTA-SER, and MSN-PTA-GLU, with optimal physicochemical attributes for drug delivery applications. The careful optimization of sericin and gluten concentrations results in finely tuned nanoparticles, showcasing uniform size, enhanced negative zeta potential, and remarkable stability. Various analyses, from Dynamic Light Scattering (DLS) and scanning electron microscopy (SEM) to transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray diffraction analysis (XRD), and Thermogravimetric analysis (TGA), provide insights into structural integrity and surface modifications. Vibrating Sample Magnetometer (VSM) analysis underscores superparamagnetic behavior, positioning these nanocapsules as promising candidates for targeted drug delivery. In vitro evaluations demonstrate dose-dependent inhibition of cell viability in MCF-7 and Zr-75-1 breast cancer cells, emphasizing the therapeutic potential of MSN-PTA-SER and MSN-PTA-GLU. The interplay of surface charge and pH-dependent cellular uptake highlights the robust stability and versatility of these nanocarriers in tumor microenvironment, paving the way for advancements in targeted drug delivery and personalized nanomedicine. This comparative analysis explores the suitability of silk sericin and gluten, unraveling a promising avenue for the development of advanced, targeted, and efficient breast cancer treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    开发一种治疗细菌感染的新方法具有重要意义。由于抗生素的频繁滥用导致细菌耐药性的严重问题。本研究提出了一种无抗生素抗菌纳米粒子,用于消除耐甲氧西林金黄色葡萄球菌(MRSA)基于多模式协同抗菌能力的化学动力学疗法(CDT),光热效应,和先天免疫调节。具体来说,制备了聚多巴胺(PDA)涂层和Ag纳米颗粒负载的核壳结构的Fe3O4纳米颗粒(Fe3O4@PDA-Ag)。Fe3O4将细菌感染的酸性微环境中存在的H2O2催化成毒性更强的活性氧(ROS),并与释放的Ag离子协同作用,发挥更强的杀菌能力。可以通过近红外光触发的PDA的光热作用增强,并通过光热作用使生物膜松弛,以促进ROS和Ag离子渗透到生物膜中,导致破坏生物膜结构以及杀死被封装的细菌。此外,Fe3O4@PDA-Ag通过促进M1巨噬细胞极化发挥间接抗菌作用。动物模型证明Fe3O4@PDA-Ag通过光热增强CDT有效控制MRSA诱导的感染,Ag+释放,和巨噬细胞介导的杀菌特性。酸触发的抗菌纳米颗粒有望对抗耐药细菌感染。
    It is of great significance to develop a novel approach to treat bacterial infections, as the frequent misuse of antibiotics leads to the serious problem of bacterial resistance. This study proposed antibiotic-free antibacterial nanoparticles for eliminating methicillin-resistant Staphylococcus aureus (MRSA) based on a multi-model synergistic antibacterial ability of chemodynamic therapy (CDT), photothermal effect, and innate immunomodulation. Specifically, a polydopamine (PDA) layer coated and Ag nanoparticles loaded core-shell structure Fe3O4 nanoparticles (Fe3O4@PDA-Ag) is prepared. The Fe3O4 catalyzes H2O2 present in acidic microenvironment of bacterial infection into more toxic reactive oxygen species (ROS) and synergizes with the released Ag ions to exert a stronger bactericidal capacity, which can be augmented by photothermal action of PDA triggered by near-infrared light and loosen the biofilm by photothermal action to promote the penetration of ROS and Ag ion into the biofilm, result in disrupting biofilm structure along with killing encapsulated bacteria. Furthermore, Fe3O4@PDA-Ag exerts indirect antibacterial effects by promoting M1 macrophage polarizing. Animal models demonstrated that Fe3O4@PDA-Ag effectively controlled MRSA-induced infections through photothermal enhanced CDT, Ag+ releasing, and macrophage-mediated bactericidal properties. The acid-triggered antibacterial nanoparticles are expected to combat drug-resistant bacteria infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    化学动力学疗法(CDT)是一种利用羟基自由基(·OH)杀伤癌细胞的新型肿瘤治疗方法。然而,其治疗效果受到•OH的短寿命和降低的•OH生成速度的严格限制。在这里,有效的CDT是通过提高·OH寿命和持久产生·OH通过颗粒内电子转移在异质纳米粒子(NP)。这些异质NP由均匀分布的Cu和Fe3O4(CFONP)组成,具有较大的相互作用界面,并且电子倾向于从Cu转移到Fe3O4,以出现=Cu2并增加=Fe2。生成的=Cu2+可以与GSH相互作用,延长了·OH的寿命,以更高的速度产生·用H2O2产生OH,并诱导细胞铁凋亡用于肿瘤治疗。改善的=Fe2+还可以改善H2O2下的·OH释放,直到Cu耗尽。因此,实现可持续的•OH生成以促进细胞凋亡,用于有效的肿瘤治疗。由于H2O2和GSH仅在肿瘤中过表达,CFONPs可以在肿瘤微环境中降解,这些NPs具有很高的生物安全性,可以通过尿液代谢。这项工作通过粒子内电子转移为有效的癌症CDT提供了一种新型生物材料。
    Chemodynamic therapy (CDT) is a novel tumor treatment method by using hydroxyl radicals (•OH) to kill cancer cells. However, its therapeutic effects are strictly confined by the short lifespan of •OH and reduced •OH generation speed. Herein, an effective CDT is achieved by both improving •OH lifetime and long-lasting generating •OH through intraparticle electron transfer within heterogeneous nanoparticles (NPs). These heterogeneous NPs are composed of evenly distributed Cu and Fe3O4 (CFO NPs) with large interaction interfaces, and electrons tend to transfer from Cu to Fe3O4 for the appearance of ≡Cu2+ and increase in ≡Fe2+. The generated ≡Cu2+ can interact with GSH, which prolongs the lifespan of •OH, produces ≡Cu+ for higher speed •OH generation with H2O2, and induces cell ferroptosis for tumor therapy. The improved ≡Fe2+ can also improve the •OH release under H2O2 until Cu is depleted. As a result, a sustainable •OH generation is achieved to promote cell apoptosis for effective tumor therapy. Since H2O2 and GSH are only overexpressed at tumor, and CFO NPs can degrade in the tumor microenvironment, these NPs are with high biosafety and can be metabolized by urine. This work provides a novel biomaterial for effective cancer CDT through intraparticle electron transfer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多形性胶质母细胞瘤(GBM),潜在的公共卫生问题,是先进科学领域要解决的巨大挑战。基于Fenton反应的化学动力学疗法(CDT)成为治疗GBM的最先进的治疗方式。然而,穿越血脑屏障(BBB)到达GBM是另一场无休止的马拉松。在这次审查中,已经对BBB的生理学进行了阐述,以了解跨越这些潜在障碍治疗GBM的机制。此外,已经讨论了基于Fenton的纳米材料的设计,用于在肿瘤区域产生活性氧以根除癌细胞。为了有效的肿瘤靶向,还探索了可以通过神经血管运输通道穿过BBB的生物纳米材料。为了克服无机纳米材料引起的神经毒性,系统总结了使用具有增强的生物相容性和有效的肿瘤靶向能力的智能纳米制剂来提高CDT的效率。最后,除CDT外,还证明了基于Fenton的智能纳米系统用于多模式治疗方法的进展。希望,本系统综述将提供对基于Fenton的CDT的更好理解和对GBM治疗的深入了解.
    Glioblastoma multiforme (GBM), a potential public health issue, is a huge challenge for the advanced scientific realm to solve. Chemodynamic therapy (CDT) based on the Fenton reaction emerged as a state-of-the-art therapeutic modality to treat GBM. However, crossing the blood-brain barrier (BBB) to reach the GBM is another endless marathon. In this review, the physiology of the BBB has been elaborated to understand the mechanism of crossing these potential barriers to treat GBM. Moreover, the designing of Fenton-based nanomaterials has been discussed for the production of reactive oxygen species in the tumor area to eradicate the cancer cells. For effective tumor targeting, biological nanomaterials that can cross the BBB via neurovascular transport channels have also been explored. To overcome the neurotoxicity caused by inorganic nanomaterials, the use of smart nanoagents having both enhanced biocompatibility and effective tumor targeting ability to enhance the efficiency of CDT are systematically summarized. Finally, the advancements in intelligent Fenton-based nanosystems for a multimodal therapeutic approach in addition to CDT are demonstrated. Hopefully, this systematic review will provide a better understanding of Fenton-based CDT and insight into GBM treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于肿瘤微环境(TME)中谷胱甘肽(GSH)过多和缺氧,单独的化学动力学疗法(CDT)无法达到足够的治疗效果。迫切需要制定一种新的策略来提高效率。在这里,我们制备了由胶体二氧化硅衍生的硅酸铜纳米平台(CSNP)。CSNP中的Cu(II)可以还原成Cu(I),级联以诱导随后的CDT过程。此外,受益于660nm激光照射下的GSH消耗和氧气(O2)产生,CSNP表现出Fenton样和缺氧缓解活性,有助于在TME中有效产生超氧阴离子自由基(•O2-)和羟基自由基(•OH)。此外,具有合适的带隙特性和优异的光化学性质,CSNP还可以用作光动力疗法(PDT)的有效I型光敏剂。CSNP的协同CDT/PDT活性在体外和体内实验中均表现出有效的抗肿瘤作用和生物安全性。集成Fenton样和光敏特性的一体化纳米平台的开发可以改善肿瘤内的ROS产生。这项研究强调了硅酸盐纳米材料在癌症治疗中的潜力。
    Chemodynamic therapy (CDT) alone cannot achieve sufficient therapeutic effects due to the excessive glutathione (GSH) and hypoxia in the tumor microenvironment (TME). Developing a novel strategy to improve efficiency is urgently needed. Herein, we prepared a copper silicate nanoplatform (CSNP) derived from colloidal silica. The Cu(II) in CSNP can be reduced to Cu(I), which cascades to induce a subsequent CDT process. Additionally, benefiting from GSH depletion and oxygen (O2) generation under 660 nm laser irradiation, CSNP exhibits both Fenton-like and hypoxia-alleviating activities, contributing to the effective generation of superoxide anion radical (•O2-) and hydroxyl radical (•OH) in the TME. Furthermore, given the suitable band-gap characteristic and excellent photochemical properties, CSNP can also serve as an efficient type-I photosensitizer for photodynamic therapy (PDT). The synergistic CDT/PDT activity of CSNP presents an efficient antitumor effect and biosecurity in both in vitro and in vivo experiments. The development of an all-in-one nanoplatform that integrates Fenton-like and photosensing properties could improve ROS production within tumors. This study highlights the potential of silicate nanomaterials in cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    经由Fenton样反应的化学动力学疗法(CDT)由于其从肿瘤过氧化氢(H2O2)产生高细胞毒性·OH自由基的能力而非常有吸引力。然而,CDT的抗肿瘤功效通常受到肿瘤微环境中相对较低的自由基生成效率和高水平的抗氧化谷胱甘肽(GSH)的挑战。在这里,一种创新的类似Fenton的光热催化剂,Fe螯合聚多巴胺(PDA@Fe)纳米粒子,通过一步分子组装策略构建了具有优异的GSH消耗能力的双模态成像引导协同光热增强化学动力学治疗。PDA@Fe纳米粒子中的Fe(III)离子可以消耗肿瘤微环境中过表达的GSH,避免潜在的•OH消耗,而产生的Fe(II)离子随后通过Fenton反应将肿瘤H2O2转化为细胞毒性·OH自由基。值得注意的是,PDA@Fe纳米粒子表现出优异的近红外光吸收,导致优异的光热转化能力,这进一步促进上述级联催化以产生更多·OH自由基用于增强的CDT。结合T1加权磁共振成像(MRI)对比增强(r1=8.13mM-1s-1)和PDA@Fe纳米粒子的强光声(PA)成像信号,该设计最终实现了光热-化学动力协同治疗。总的来说,这项工作提供了一个新的有希望的范例,可以在一个明确的个性化精准疾病治疗框架中有效地适应成像和治疗功能.
    Chemodynamic therapy (CDT) via Fenton-like reaction is greatly attractive owing to its capability to generate highly cytotoxic •OH radicals from tumoral hydrogen peroxide (H2O2). However, the antitumor efficacy of CDT is often challenged by the relatively low radical generation efficiency and the high levels of antioxidative glutathione (GSH) in tumor microenvironment. Herein, an innovative photothermal Fenton-like catalyst, Fe-chelated polydopamine (PDA@Fe) nanoparticle, with excellent GSH-depleting capability is constructed via one-step molecular assembly strategy for dual-modal imaging-guided synergetic photothermal-enhanced chemodynamic therapy. Fe(III) ions in PDA@Fe nanoparticles can consume the GSH overexpressed in tumor microenvironment to avoid the potential •OH consumption, while the as-produced Fe(II) ions subsequently convert tumoral H2O2 into cytotoxic •OH radicals through the Fenton reaction. Notably, PDA@Fe nanoparticles demonstrate excellent near-infrared light absorption that results in superior photothermal conversion ability, which further boosts above-mentioned cascade catalysis to yield more •OH radicals for enhanced CDT. Taken together with T1-weighted magnetic resonance imaging (MRI) contrast enhancement (r1 = 8.13 mM-1 s-1) and strong photoacoustic (PA) imaging signal of PDA@Fe nanoparticles, this design finally realizes the synergistic photothermal-chemodynamic therapy. Overall, this work offers a new promising paradigm to effectively accommodate both imaging and therapy functions in one well-defined framework for personalized precision disease treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化学动力学治疗(CDT),利用金属离子将内源性H2O2转化为致命的羟基自由基(·OH),已成为肿瘤治疗的有效方法。然而,谷胱甘肽(GSH)降低了其功效,通常在肿瘤中过度表达。在这里,开发了一种突破性策略,该策略涉及包封氧化铁纳米颗粒(IONP)和β-拉帕科恩(Lapa)的细胞外囊泡(EV)模拟纳米囊泡(NVs),以放大细胞内氧化应激。组合,NV-IONP-Lapa,通过从卵巢上皮细胞中连续挤出产生,显示出优异的生物相容性和杠杆磁性引导,以增强卵巢癌细胞的内吞作用,通过NADPH醌氧化还原酶1(NQO1)通过拉帕催化产生选择性H2O2。同时,在酸性条件下从IONP电离释放的铁通过Fenton反应触发H2O2转化为·OH。此外,拉帕的催化过程消除了肿瘤中的GSH,进一步放大氧化应激。设计的NV-IONP-Lapa展示了出色的肿瘤靶向性,促进MR成像,并增强肿瘤抑制,无明显副作用。这项研究提出了一种有前途的基于NV的药物递送系统,用于通过增强肿瘤内氧化应激来利用CDT对抗NQO1过表达的肿瘤。
    Chemodynamic therapy (CDT), employing metal ions to transform endogenous H2O2 into lethal hydroxyl radicals (•OH), has emerged as an effective approach for tumor treatment. Yet, its efficacy is diminished by glutathione (GSH), commonly overexpressed in tumors. Herein, a breakthrough strategy involving extracellular vesicle (EV) mimetic nanovesicles (NVs) encapsulating iron oxide nanoparticles (IONPs) and β-Lapachone (Lapa) was developed to amplify intracellular oxidative stress. The combination, NV-IONP-Lapa, created through a serial extrusion from ovarian epithelial cells showed excellent biocompatibility and leveraged magnetic guidance to enhance endocytosis in ovarian cancer cells, resulting in selective H2O2 generation through Lapa catalysis by NADPH quinone oxidoreductase 1 (NQO1). Meanwhile, the iron released from IONPs ionization under acidic conditions triggered the conversion of H2O2 into •OH by the Fenton reaction. Additionally, the catalysis process of Lapa eliminated GSH in tumor, further amplifying oxidative stress. The designed NV-IONP-Lapa demonstrated exceptional tumor targeting, facilitating MR imaging, and enhanced tumor suppression without significant side effects. This study presents a promising NV-based drug delivery system for exploiting CDT against NQO1-overexpressing tumors by augmenting intratumoral oxidative stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号