Chemoautotrophic Growth

  • 文章类型: Journal Article
    各种环境因素,包括H2可用性,代谢权衡,最佳生长温度,随机性,和水文学,进行了检查,以确定它们是否影响三个自养嗜热菌之间的微生物竞争。硫代硫酸盐还原剂热营养杆菌(Topt72°C)与72°C的产甲烷菌甲烷菌(Topt82°C)和65°C的高和低H2浓度的热嗜甲烷热球菌(Topt65°C)分别进行单培养和共培养。两种产甲烷菌均显示出代谢权衡,从高H2浓度下的高生长速率-低细胞产量转变为低H2浓度下的低生长速率-高细胞产量,以及与硫代硫酸盐还原剂共培养时。在1:1的初始比率中,D.热营养菌在高H2和低H2下都胜过产甲烷菌,在低H2上未检测到H2S,并且仅在CO2作为电子受体的情况下生长,表明与低H2的代谢权衡相似。当初始产甲烷菌与硫代硫酸盐的还原剂比率从1:1变化到104:1时,高H2时,D.在72°C下,嗜热菌总是胜过M.jannaschii。然而,当比例为103:1时,嗜热营养杆菌在65°C时胜过嗜热营养杆菌。将纯热流体与冷海水混合的反应性传输模型表明,在混合流体高于72°C的停留时间足够高的系统中,超热产甲烷菌占主导地位。停留时间较短,嗜热硫代硫酸盐还原剂占主导地位。如果停留时间随着沿流动路径的流体温度降低而增加,那么嗜热产甲烷菌可能占主导地位。如果嗜热产甲烷菌与硫代硫酸盐还原剂的初始比率增加,则嗜热产甲烷菌的优势会扩展到以前的硫代硫酸盐还原剂主导的条件。
    目的:深层地下是地球上最大的微生物生物量库,是早期地球和外星环境中生命的类似物。甲烷生成和硫减少是在热缺氧热液喷口环境中发现的更常见的化学自养代谢。H2氧化硫还原剂与产甲烷菌之间的竞争主要由氧化还原反应与前者竞争的产甲烷菌的热力学有利性驱动。这项研究表明,热液喷口化学自养生物之间的竞争,嗜热甲烷热球菌,和热营养脱硫杆菌也受到其他重叠因素的影响,例如交错的最佳生长温度,随机性,和水文学。通过对微生物竞争的各个方面进行建模,再加上现场数据,更好地了解产甲烷菌如何在热缺氧环境中胜过硫代硫酸盐还原剂,以及深层地下如何促进生物地球化学循环。
    Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased.
    OBJECTIVE: The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嗜中性粒细胞铁氧化和还原细菌,菌株MIZ03T,以前是从茨城县的湿地中分离出来的,日本。这里,我们报告了该菌株的详细特征。它只有一个极地鞭毛,和革兰氏染色阴性。它不仅可以化学自养生长,而且可以通过有氧呼吸和发酵进行化学有机营养生长。主要的细胞脂肪酸是C16:1ω7c/C16:1ω6c,C16:0系统发育分析表明,菌株MIZ03T属于Rhodoferax属。该菌株与铁红红豆杉密切相关,16SrRNA基因序列相似性为98.5%。基于其表型和基因组特征,我们得出的结论是,菌株MIZ03T代表了Rhodoferax属中的一个新物种。我们提出名称Rhodoferax石养。11月。来适应这种压力。应变类型为MIZ03T(=JCM34246T=DSM113266T)。我们还提出了名称Rhodoferaxkorensissp。11月。,其中菌株类型为DCY110T(=KCTC52288T=JCM31441T),对于有效的,但还不是有效的,出版名称\'Rhodoferaxkoreense\'。
    A neutrophilic iron-oxidizing and -reducing bacterium, strain MIZ03T, was previously isolated from a wetland in Ibaraki, Japan. Here, we report the detailed characteristics of this strain. It was motile with a single polar flagellum, and Gram-stain-negative. It could grow not only chemolithoautotrophically but also chemoorganotrophically by aerobic respiration and fermentation. Major cellular fatty acids were C16 : 1  ω7c/C16 : 1  ω6c, and C16 : 0. Phylogenetic analyses indicated that strain MIZ03T belonged to the genus Rhodoferax. This strain was closely related to Rhodoferax ferrireducens with 98.5 % of 16S rRNA gene sequence similarity. Based on its phenotypic and genomic based characteristics, we conclude that strain MIZ03T represents a new species in the genus Rhodoferax. We propose the name Rhodoferax lithotrophicus sp. nov. to accommodate this strain. The type strain is MIZ03T (=JCM 34246T=DSM 113266T). We also propose the name Rhodoferax koreensis sp. nov., of which the type strain is DCY110T (=KCTC 52288T=JCM 31441T), for the effectively, but not yet validly, published name \'Rhodoferax koreense\'.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氨氧化细菌(AOB)在地球上普遍存在,在生物修复中具有广泛的应用。然而,按命名法保存并保存在微生物培养馆藏中的物种数量仍然很低。此外,在过去的几十年里,只有少数新物种被报道。在这项研究中,我们将琼脂密封在血清瓶中,形成一种固体琼脂平板,顶部空间的氧气浓度保持在低水平。通过使用这些板,获得了八个AOB分离株,包括两个新物种。当AOB细胞在密封的固体琼脂平板上生长时,形成可见菌落的时间大大减少,菌落的最大直径达到2毫米,使得AOB分离过程快速高效。基于五个AOB分离株,顶空氧浓度对AOB在固体平板或液体培养物上的生长都有显着影响。尤其是,当在21%O2下生长时,在固体琼脂平板上形成的菌落数量非常低,有时没有可见的菌落形成。除了在AOB隔离上的应用,密封的固体琼脂平板对于AOB细胞的计数和保存也是有效的。在室温下保存十个月以上,仍然可以回收平板上的AOB菌落。该方法提供了一种从环境中分离出更多新的AOB物种并在微生物培养馆藏中沉积更多物种的可行方法。
    Ammonia-oxidizing bacteria (AOB) are ubiquitous on the earth and have broad applications in bioremediation. However, the number of their species with standing in nomenclature and deposited in Microbial Culture Collections still remains low. Moreover, only a few novel species have been reported over the last decades. In this study, we sealed agar in serum bottles to develop a kind of solid agar plate with the oxygen concentration in the headspace maintained at low levels. By using these plates, eight AOB isolates including two novel species were obtained. When AOB cells were grown on the sealed solid agar plates, the time to form visible colonies was largely reduced and the maximum diameter of colonies reached 2 mm, which makes the process of AOB isolation rapid and efficient. Based on five AOB isolates, the headspace oxygen concentration had a significant influence on AOB growth either on solid plate or in liquid culture. Especially, when grown under 21 % O2, the number of colonies formed on solid agar plates was very low and sometimes no visible colony formed. Besides the application on AOB isolation, the sealed solid agar plate was also effective for the enumeration and preservation of AOB cells. When preserved under room temperature for more than ten months, the AOB colonies on the plate could still be recovered. This method provides a feasible way to isolate more novel AOB species from the environment and deposit more species in Microbial Culture Collections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究进行了比较蛋白质组学分析,以确定海洋细菌Ghiorseabivora中化学自养铁氧化生物学功能的潜在遗传标记。迄今为止,这是Zetaproteobacteria类中唯一的非专性铁氧化剂的物种,提供了一个独特的机会来研究差异蛋白质表达,以确定在中性pH值下参与铁氧化的关键基因。在铁和氢氧化条件下鉴定出超过1000种蛋白质,在两种治疗中发现差异表达的蛋白质。值得注意的是,鉴定了在铁氧化过程中上调的基因簇。该簇包含编码细胞色素的基因,这些基因与已知的铁氧化酶具有序列相似性,Cyc2.有趣的是,这些细胞色素,保存在细菌和古细菌中,不表现出Cyc2的典型β-桶结构。该簇可能编码一种生物纳米线样跨膜复合物,其中包含跨内膜的多种氧化还原蛋白,周质,外膜,和细胞外空间。通过定量逆转录PCR证实了在铁氧化条件下与该复合物相关的关键基因的上调。这些发现得到了电微生物学方法的进一步支持,这表明G.bivora在处于阴极电位的三电极系统中产生负电流。这项研究为化学自养铁氧化的生物学功能提供了重要见解。
    This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数自养生物具有单一的碳固定途径。热液喷口管虫Riftiapachyptila的化学自养共生体,然而,具有两种功能途径:Calvin-Benson-Bassham(CBB)和还原性三羧酸(rTCA)循环。这两种途径如何协调是未知的。在这里,我们测量了净碳固定率,通过在环境压力下孵化从东太平洋上升收集的管虫,Riftiapachyptia内共生体的转录/代谢反应和转录共表达模式,温度和地球化学。结果表明,rTCA和CBB转录模式随不同的地球化学机制而变化,并且每种途径与特定的代谢过程有关;rTCA与氢化酶和异化硝酸盐还原有关,而CBB与硫化物氧化和同化硝酸盐还原有关,提示在代谢功能中具有独特但互补的作用。此外,我们的网络分析暗示rTCA和一组1e氢化酶是对硫化物和氧气限制的生理反应的关键参与者。净碳固定率也是示例性的,因此,我们建议CBB和rTCA的共活性可能是维持高碳固定率的一种适应方法,在动态通风环境中赋予健身优势。
    Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    菌株S30A2T,从蒙自铜矿酸性矿山排水沉积物中分离出来,云南,被提议代表硫氧化属酸性硫杆菌的一种新物种。细胞革兰氏染色阴性,非内生孢子形成,具有一个或两个单极鞭毛和杆状的高度能动。菌株是嗜温的,在30-50°C生长(最佳,38°C),嗜酸,在pH2.0-4.5下生长(最佳,pH2.5),并耐受0-4%(w/v;684moll-1)NaCl。基于16SrRNA基因的序列分析表明,菌株S30A2T属于嗜酸硫杆菌属,与嗜酸硫杆菌属KUT型菌株的相似性最大,为96.6%。菌株S30A2T的基因组DNAG+C含量为59.25mol%。菌株S30A2T和A.caldusKUT之间的平均核苷酸同一性ANIb和ANIm值分别为70.95和89.78%,数字DNA-DNA杂交值分别为24.9%。菌株S30A2T是严格需氧的,可以利用元素硫和四硫酸盐来支持化学营养生长。S30A2T的主要细胞脂肪酸为C19:1ω7c。呼吸醌是泛醌-8和泛醌-7。基于它的系统发育,遗传,表型,生理和化学分类学特征,菌株S30A2T被认为代表了酸性硫杆菌属的一种新物种,其名称为嗜酸硫杆菌。11月。是提议的。菌株类型为S30A2T(=CGMCC1.17059T=KCTC72580T)。
    Strain S30A2T, isolated from the acid mine drainage sediment of Mengzi Copper Mine, Yunnan, is proposed to represent a novel species of the sulphur-oxidizing genus Acidithiobacillus. Cells were Gram-stain-negative, non-endospore forming, highly motile with one or two monopolar flagella and rod-shaped. The strain was mesophilic, growing at 30-50 °C (optimum, 38 °C), acidophilic, growing at pH 2.0-4.5 (optimum, pH 2.5), and tolerant of 0-4 % (w/v; 684 mol l-1) NaCl. The 16S rRNA gene-based sequence analysis showed that strain S30A2T belongs to the genus Acidithiobacillus and shows the largest similarity of 96.6 % to the type strain Acidithiobacillus caldus KUT. The genomic DNA G+C content of strain S30A2T was 59.25 mol%. The average nucleotide identity ANIb and ANIm values between strain S30A2T and A. caldus KUT were 70.95 and 89.78 %, respectively and the digital DNA-DNA hybridization value was 24.9 %. Strain S30A2T was strictly aerobic and could utilize elementary sulphur and tetrathionate to support chemolithotrophic growth. The major cellular fatty acid of S30A2T was C19 : 1ω7c. The respiratory quinones were ubiquinone-8 and ubiquinone-7. Based upon its phylogenetic, genetic, phenotypic, physiologic and chemotaxonomic characteristics, strain S30A2T is considered to represent a novel species of the genus Acidithiobacillus, for which the name Acidithiobacillus acidisediminis sp. nov. is proposed. The type strain is S30A2T (=CGMCC 1.17059T=KCTC 72580T).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    烟气减排技术旨在减少烟气排放对环境的影响,特别是来自工业过程和发电厂。减少烟气排放的一种方法包括生物缓解,利用微生物将有害气体转化为危害较小或惰性物质。因此,该评论探讨了化学营养与烟气相互作用的生物缓解效率及其在生物反应器中的潜在应用。化学营养体是可以从无机化合物中获取能量的微生物,如二氧化碳(CO2),氮氧化物(NOx),二氧化硫(SO2),存在于烟气中。这些微生物利用专门的酶途径来氧化这些化合物并产生能量。通过利用化学营养生物的代谢能力,烟气排放可以转化为增值产品。生物反应器为化学营养微生物的生长和活性提供受控环境。根据具体应用,这些可以设计为悬浮或固定的反应器系统。生物反应器配置的选择取决于过程效率,可扩展性,和易于操作。影响化学营养相互作用的生物缓解效率的因素包括烟气的浓度和组成,操作条件(如温度、pH值,和营养可用性),和反应堆设计。在生物反应器中与烟气的化学营养作用提供了一种潜在的有效方法来减轻烟气排放。该领域的持续研究和开发对于优化反应堆设计是必要的,微生物联盟,和操作条件。在了解化学营养微生物的代谢和生理学方面的进展将有助于开发针对烟气排放的强大且可扩展的生物缓解技术。
    Flue gas mitigation technologies aim to reduce the environmental impact of flue gas emissions, particularly from industrial processes and power plants. One approach to mitigate flue gas emissions involves bio-mitigation, which utilizes microorganisms to convert harmful gases into less harmful or inert substances. The review thus explores the bio-mitigation efficiency of chemolithotrophic interactions with flue gas and their potential application in bio-reactors. Chemolithotrophs are microorganisms that can derive energy from inorganic compounds, such as carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2), present in the flue gas. These microorganisms utilize specialized enzymatic pathways to oxidize these compounds and produce energy. By harnessing the metabolic capabilities of chemolithotrophs, flue gas emissions can be transformed into value-added products. Bio-reactors provide controlled environments for the growth and activity of chemolithotrophic microorganisms. Depending on the specific application, these can be designed as suspended or immobilized reactor systems. The choice of bio-reactor configuration depends on process efficiency, scalability, and ease of operation. Factors influencing the bio-mitigation efficiency of chemolithotrophic interactions include the concentration and composition of the flue gas, operating conditions (such as temperature, pH, and nutrient availability), and reactor design. Chemolithotrophic interactions with flue gas in bio-reactors offer a potentially efficient approach to mitigating flue gas emissions. Continued research and development in this field are necessary to optimize reactor design, microbial consortia, and operating conditions. Advances in understanding the metabolism and physiology of chemolithotrophic microorganisms will contribute to developing robust and scalable bio-mitigation technologies for flue gas emissions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    据推测,溶解的无机碳可以刺激微生物化学自养活性,作为深层地下环境碳循环中的生物汇。这里,我们使用定量DNA稳定同位素探测宏基因组组装基因组(MAG)在来自Biga半岛(土耳其)750米深的地下含水层的热液中多个13C标记的碳酸氢盐浓度下检验了这一假设。在较高的碳酸氢盐浓度下,吸收13C标记的碳酸氢盐的微生物种群的多样性显着不同,并且可以与13C标记的MAG中编码的四个单独的碳固定途径相关联。编码Calvin-Benson-Bassham循环的微生物种群在所有测试的碳酸氢盐浓度中对碳固定的贡献最高,跨越1-10mM。然而,在所有检测到的活性炭固定途径中,与编码反向三羧酸(rTCA)途径的门相关的MAG是唯一在碳酸氢盐浓度增加的情况下表现出13C-碳酸氢盐同化作用增加的微生物种群。我们的研究提供了第一个实验数据,支持以下预测:碳酸氢盐浓度的增加可能会通过rTCA循环及其生物汇促进深层地下无机碳的化学自养。
    Dissolved inorganic carbon has been hypothesized to stimulate microbial chemoautotrophic activity as a biological sink in the carbon cycle of deep subsurface environments. Here, we tested this hypothesis using quantitative DNA stable isotope probing of metagenome-assembled genomes (MAGs) at multiple 13C-labeled bicarbonate concentrations in hydrothermal fluids from a 750-m deep subsurface aquifer in the Biga Peninsula (Turkey). The diversity of microbial populations assimilating 13C-labeled bicarbonate was significantly different at higher bicarbonate concentrations, and could be linked to four separate carbon-fixation pathways encoded within 13C-labeled MAGs. Microbial populations encoding the Calvin-Benson-Bassham cycle had the highest contribution to carbon fixation across all bicarbonate concentrations tested, spanning 1-10 mM. However, out of all the active carbon-fixation pathways detected, MAGs affiliated with the phylum Aquificae encoding the reverse tricarboxylic acid (rTCA) pathway were the only microbial populations that exhibited an increased 13C-bicarbonate assimilation under increasing bicarbonate concentrations. Our study provides the first experimental data supporting predictions that increased bicarbonate concentrations may promote chemoautotrophy via the rTCA cycle and its biological sink for deep subsurface inorganic carbon.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    软体动物Lucinomacapensis,在纳米比亚最小氧气带沉积物中,双目蓝藻和Nassariusvinctus含量很高。为了了解哪些营养策略使它们在这个极端的栖息地中达到如此令人印象深刻的丰度,我们调查了它们的营养多样性,包括加拿大乳杆菌的化学共生,关注共生体的氮生化途径。我们结合了大量氮和碳(δ13C和δ15N)以及氨基酸氮的化合物特异性同位素分析(AAs-δ15NPhe和δ15NGlu)的结果,通过对L.capensis组织的16SrRNA基因测序以及铵的探索性结果,硝酸盐和亚硝酸盐的周转。双壳类动物的营养位置(TP)位于自养和混合营养之间,与其拟议的与硫氧化念珠菌Thioazoropha的共生关系一致。共生体.这里显示出共生体进行硝酸盐还原和铵吸收,明确表明铵宿主共生体回收,但令人惊讶的是无法固定氮气。双壳类双尖杉的TP位于混合营养和草食性之间。腹足类N.vinctus的TP反映了杂食。多种证据结合当前的生态系统知识,将沉积的硅藻作为双尖杉和N.vinctus饮食的重要组成部分,可能有时补充化学自养细菌。这项研究强调了底栖-浮游耦合的重要性,该耦合促进了OMZ中大型底栖动物的饮食基础。它进一步揭示了,与所有浅水透明共生体相比,更深的水透明共生体依靠铵同化而不是固氮来获得生长所需的氮。
    The molluscs Lucinoma capensis, Lembulus bicuspidatus and Nassarius vinctus are highly abundant in Namibian oxygen minimum zone sediments. To understand which nutritional strategies allow them to reach such impressive abundances in this extreme habitat we investigated their trophic diversity, including a chemosymbiosis in L. capensis, focussing on nitrogen biochemical pathways of the symbionts. We combined results of bulk nitrogen and carbon (δ13C and δ15N) and of compound-specific isotope analyses of amino acid nitrogen (AAs-δ15NPhe and δ15NGlu), with 16S rRNA gene sequencing of L. capensis tissues and also with exploratory results of ammonium, nitrate and nitrite turnover. The trophic position (TP) of the bivalve L. capensis is placed between autotrophy and mixotrophy, consistent with its proposed symbiosis with sulfur-oxidizing Candidatus Thiodiazotropha sp. symbionts. The symbionts are here revealed to perform nitrate reduction and ammonium uptake, with clear indications of ammonium host-symbionts recycling, but surprisingly unable to fix nitrogen. The TP of the bivalve L. bicuspidatus is placed in between mixotrophy and herbivory. The TP of the gastropod N. vinctus reflected omnivory. Multiple lines of evidences in combination with current ecosystem knowledge point to sedimented diatoms as important components of L. bicuspidatus and N. vinctus\' diet, likely supplemented at times with chemoautotrophic bacteria. This study highlights the importance of benthic-pelagic coupling that fosters the dietary base for macrozoobenthos in the OMZ. It further unveils that, in contrast to all shallow water lucinid symbionts, deeper water lucinid symbionts rely on ammonium assimilation rather than dinitrogen fixation to obtain nitrogen for growth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将CO2转化为增值产品可以捕获和回收温室气体排放。虽然植物和其他光合生物在关闭全球碳循环中起着关键作用,它们对光驱动碳固定的依赖可能会限制工业化学合成。产甲烷古细菌提供了一个替代平台,作为能够非光合CO2固定的自养微生物物种,为工程微生物发酵提供了一条潜在的途径,无需光照射即可从二氧化碳中合成化学物质。这一目标的一个主要挑战是将上游碳固定途径与下游生物合成途径连接起来,鉴于古细菌和典型异养生物之间的代谢差异。我们设计了产甲烷菌模型,海洋甲烷球菌,将乙酰辅酶A转向增值化学品的生物合成,包括生物塑料聚羟基丁酸酯(PHB)。许多研究暗示氧化还原池的局限性,与NAD(P)(H)池测量M.maripaludis<15%的大肠杆菌,可能是因为产甲烷古细菌利用F420和铁氧还蛋白代替。多种工程策略被用来精确地瞄准和增加辅因子库,包括合成烟酰胺补救途径的异源表达以及来自博伊氏念珠菌的NAD+依赖性甲酸脱氢酶。具有改进的NADH库的M.maripaludis工程菌株产生高达171±4mg/LPHB和24.0±1.9%的干细胞重量。本研究中提出的代谢工程策略扩大了M.maripaludis在使用CO2进行可持续化学合成中的用途,并且可以转移到相关的古细菌物种。
    The conversion of CO2 to value-added products allows both capture and recycling of greenhouse gas emissions. While plants and other photosynthetic organisms play a key role in closing the global carbon cycle, their dependence on light to drive carbon fixation can be limiting for industrial chemical synthesis. Methanogenic archaea provide an alternative platform as an autotrophic microbial species capable of non-photosynthetic CO2 fixation, providing a potential route to engineered microbial fermentation to synthesize chemicals from CO2 without the need for light irradiation. One major challenge in this goal is to connect upstream carbon-fixation pathways with downstream biosynthetic pathways, given the distinct differences in metabolism between archaea and typical heterotrophs. We engineered the model methanogen, Methanococcus maripaludis, to divert acetyl-coenzyme A toward biosynthesis of value-added chemicals, including the bioplastic polyhydroxybutyrate (PHB). A number of studies implicated limitations in the redox pool, with NAD(P)(H) pools in M. maripaludis measured to be <15% of that of Escherichia coli, likely since methanogenic archaea utilize F420 and ferredoxins instead. Multiple engineering strategies were used to precisely target and increase the cofactor pool, including heterologous expression of a synthetic nicotinamide salvage pathway as well as an NAD+-dependent formate dehydrogenase from Candida boidinii. Engineered strains of M. maripaludis with improved NADH pools produced up to 171 ± 4 mg/L PHB and 24.0 ± 1.9% of dry cell weight. The metabolic engineering strategies presented in this study broaden the utility of M. maripaludis for sustainable chemical synthesis using CO2 and may be transferable to related archaeal species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号