Charged-aerosol detection

  • 文章类型: Journal Article
    1992年发现了一种由海洋细菌Alcanivoraxborkumensis合成的新型生物表面活性剂。这种细菌在受石油泄漏影响的海洋环境中含量丰富,它有助于降解烷烃,在这样的条件下,产生甘氨酸-葡萄糖脂生物表面活性剂。生物表面活性剂增强细菌对油滴的附着并促进碳氢化合物的吸收。由于其预期的有用特性,人们对这种生物表面活性剂的生物技术生产感兴趣。为了分析支持这一努力,开发了一种将反相高效液相色谱(HPLC)与高分辨率质谱(HRMS)相结合的方法,允许分离和鉴定甘氨酸-葡萄糖脂同源物。准确的质量,保留时间,和特征性的碎片模式用于物种分配。此外,采用带电气溶胶检测(CAD)来实现无真实标准的绝对定量。该方法用于研究使用不同碳源的A.borkumensisSK2的甘氨酸-葡萄糖脂质生产。质谱使我们能够鉴定掺入的3-羟基-链烷酸中具有不同链长(C6-C12)和不饱和度(0-1个双键)的同源物,一些以前未知的。使用CAD的定量显示,当用十六烷生长时,滴度约为丙酮酸盐的两倍(49mg/L对22mg/L)。两种碳源的主要同源物是glc-40:0-gly,丙酮酸占64%,十六烷作为唯一碳源占85%。有了这里展示的分析服,可以识别复杂和变化的糖脂,characterized,量化,如本文示例性示出的A.borkumensis的有趣的甘氨酸-葡萄糖脂。
    A novel biosurfactant was discovered to be synthesized by the marine bacterium Alcanivorax borkumensis in 1992. This bacterium is abundant in marine environments affected by oil spills, where it helps to degrade alkanes and, under such conditions, produces a glycine-glucolipid biosurfactant. The biosurfactant enhances the bacterium\'s attachment to oil droplets and facilitates the uptake of hydrocarbons. Due to its useful properties expected, there is interest in the biotechnological production of this biosurfactant. To support this effort analytically, a method combining reversed-phase high-performance liquid chromatography (HPLC) with high-resolution mass spectrometry (HRMS) was developed, allowing the separation and identification of glycine-glucolipid congeners. Accurate mass, retention time, and characteristic fragmentation pattern were utilized for species assignment. In addition, charged-aerosol detection (CAD) was employed to enable absolute quantification without authentic standards. The methodology was used to investigate the glycine-glucolipid production by A. borkumensis SK2 using different carbon sources. Mass spectrometry allowed us to identify congeners with varying chain lengths (C6-C12) and degrees of unsaturation (0-1 double bonds) in the incorporated 3-hydroxy-alkanoic acids, some previously unknown. Quantification using CAD revealed that the titer was approximately twice as high when grown with hexadecane as with pyruvate (49 mg/L versus 22 mg/L). The main congener for both carbon sources was glc-40:0-gly, accounting for 64% with pyruvate and 85% with hexadecane as sole carbon source. With the here presented analytical suit, complex and varying glycolipids can be identified, characterized, and quantified, as here exemplarily shown for the interesting glycine-glucolipid of A. borkumensis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Liamocins are a class of biosurfactants with growing interest. However, methods for identification and quantification of liamocins on the molecular level are lagging behind. Therefore, we developed a chromatographic separation based on supercritical fluid chromatography (SFC) for liamocins and structurally related exophilins. The different congeners could be separated on a charge modulated hydroxyethyl amide functionalized silica-based column. Coupling to high-resolution mass spectrometry (MS) revealed four exophilin species and four liamocin species with mannitol and arabitol as polyol head group in a sample of the yeast-like fungus Aureobasidium pullulans (A. pullulans). In contrast to a recently published reversed phase high-performance liquid chromatography (HPLC) method, the different subclasses (exophilins, mannitol liamocins and arabitol liamocins) were additionally separated by means of SFC. The structures were confirmed by their accurate masses and tandem mass spectrometry (MS/MS). A complementary quantification method was developed using SFC coupled to charged-aerosol detection (CAD) to overcome the disadvantages of quantification by means of MS without authentic standards. A flow compensation by varying the make-up flow was used to obtain a constant composition of the mobile phase during detection and to ensure a stable detector response. The concentrations of the individual liamocin species were determined using an external calibration with n-octyl-β-d-glycopyranoside. The total amount of these concentrations agrees with the dry weight of an aliquot of the heavy oil. The developed SFC-based method has the advantage of shorter analysis time and superior selectivity compared to the previously published LC separation. In brief, the here presented SFC hyphenations enable comprehensive analysis of liamocin biosurfactants providing identification and absolute quantification of individual congeners.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Liamocin biosurfactants and structurally related exophilins secreted by the Aureobasidium pullulans (A. pullulans) strain NRRL62031 were firstly analyzed by hyphenation of high-performance liquid chromatography (HPLC) with high-resolution mass spectrometry (HRMS). Ten different analytes were detected and identified by their accurate masses and divided into subclasses according to their different head groups: three liamocins with arabitol as head group, three mannitol liamocins, and four exophilins. A baseline separation of congeners within the subclasses was achieved by reversed phase HPLC on a C18 stationary phase, whereas an overlap of subclasses occurred. The structures were simultaneously confirmed by online tandem mass spectrometry (MS/MS) experiments in positive and negative ionization mode. The assigned polyol head groups and thus the feasibility of this method were confirmed by gas chromatography (GC)-MS data obtained after hydrolysis and derivatization of the liamocins. Based on the varying structural characteristics of liamocins, e.g. the polyol head group (or even none for exophilins) and the degree of acetylation, different detector response in LC-MS was expected, impairing relative quantification of congeners. Therefore, a complementary quantification method was developed using HPLC coupled to charged-aerosol detection (CAD), which allows the determination of the amount of the individual liamocin species without authentic liamocin standards. Hence, the here presented hyphenated techniques facilitate comprehensive analysis of liamocin biosurfactants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Eudragit® L100 is a commonly used polymer in a coating layer of modified-release drug formulation to prevent drug release in the stomach. The amount of Eudragit® L100 in the formula determines the dissolution profile of drug at its release medium. Hence, its quantification in reference product will facilitate the formulation of a bioequivalent drug product. Some analytical methods including size-exclusion chromatography (SEC) have been reported for characterization of Eudragit® L100 either as single component or its conjugate with the enzyme, but none for its quantification in drug formulation. In this work, an SEC method with charged-aerosol detection (CAD) was developed for determination of Eudragit® L100 in an enteric-coated tablet formulation using Waters Ultrahydrogel 1000 and Waters Ultrahydrogel 120 columns in series. The mobile phase was a mixture of 90:10 (v/v) 44.75 mM aqueous ammonium acetate buffer, pH 6.6 and acetonitrile pumped at a constant flow rate of 0.8 mL/min in isocratic mode. The method was validated for specificity, working range, limit of detection (LOD), limit of quantification (LOQ), accuracy and precision. The method was shown to be specific for Eudragit® L100 against the diluent (mobile phase) and placebo of a coating layer for the tablet. A good correlation coefficient (r = 0.9997) of CAD response against Eudragit® L100 concentration from 0.1⁻1.0 mg/mL was obtained using polynomial regression. LOD and LOQ concentrations were 0.0015 and 0.0040 mg/mL, respectively. The mean recovery of Eudragit® L100 was in the range of 88.0⁻91.1% at three levels of working concentration: 50%, 100% and 150%. Six replicated preparations of samples showed good precision of the peak area with % relative standard deviation (RSD) 2.7. In conclusion, the method was suitable for quantification of Eudragit® L100 in an enteric-coated tablet formulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号