Ceramide

神经酰胺
  • 文章类型: Journal Article
    脂毒性被认为是2型糖尿病发展过程中胰腺β细胞衰竭的主要原因。脂滴(LD)被认为可以调节β细胞对游离脂肪酸(FFA)的敏感性,但潜在的分子机制还不清楚.积累证据点,然而,细胞内鞘氨醇-1-磷酸(S1P)代谢在脂毒性介导的β细胞功能紊乱中的重要作用。在本研究中,我们比较了不可逆S1P降解增加的影响(S1P-裂解酶,SPL过表达)与大鼠INS1Eβ细胞中LD形成和脂毒性的S1P再循环增强(S1P磷酸酶1,SGPP1的过表达)相关。有趣的是,尽管这两种方法都导致S1P浓度降低,它们对FFA的易感性有相反的影响。SGPP1的过表达通过涉及增强脂质储存能力和防止氧化应激的机制来阻止FFA介导的caspase-3活化。相比之下,SPL过表达限制了脂滴生物发生,内容和大小,同时加速吸脂。这与FFA诱导的过氧化氢形成有关,线粒体片段化和功能障碍,以及ER压力。这些变化与促凋亡神经酰胺的上调相吻合,但与脂质过氧化率无关。同样在人EndoC-βH1β细胞中,同时过表达SGPP1的同时抑制SPL导致与INS1E-SGPP1细胞相似甚至更明显的LD表型。因此,细胞内S1P周转显著调节LD含量和大小,并影响β细胞对FFA的敏感性。
    Lipotoxicity has been considered the main cause of pancreatic beta-cell failure during type 2 diabetes development. Lipid droplets (LD) are believed to regulate the beta-cell sensitivity to free fatty acids (FFA), but the underlying molecular mechanisms are largely unclear. Accumulating evidence points, however, to an important role of intracellular sphingosine-1-phosphate (S1P) metabolism in lipotoxicity-mediated disturbances of beta-cell function. In the present study, we compared the effects of an increased irreversible S1P degradation (S1P-lyase, SPL overexpression) with those associated with an enhanced S1P recycling (overexpression of S1P phosphatase 1, SGPP1) on LD formation and lipotoxicity in rat INS1E beta-cells. Interestingly, although both approaches led to a reduced S1P concentration, they had opposite effects on the susceptibility to FFA. Overexpression of SGPP1 prevented FFA-mediated caspase-3 activation by a mechanism involving an enhanced lipid storage capacity and prevention of oxidative stress. In contrast, SPL overexpression limited lipid droplet biogenesis, content and size, while accelerating lipophagy. This was associated with FFA-induced hydrogen peroxide formation, mitochondrial fragmentation and dysfunction, as well as ER stress. These changes coincided with upregulation of proapoptotic ceramides, but were independent of lipid peroxidation rate. Also in human EndoC-βH1 beta-cells suppression of SPL with simultaneous overexpression of SGPP1 led to a similar and even more pronounced LD phenotype as that in INS1E-SGPP1 cells. Thus, intracellular S1P turnover significantly regulates LD content and size, and influences beta-cell sensitivity to FFA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:创伤性脑损伤(TBI)会引起神经炎症,并可能导致长期的神经功能障碍,即使在轻度TBI(mTBI)的情况下。尽管这种疾病负担很大,对TBI的细胞机制的不完全理解阻碍了TBI的管理。鞘脂(SPL)及其代谢物已成为与组织损伤相关的生物过程的关键协调器,神经炎症,和炎症的解决。迄今为止,尚无研究调查动物模型或人类病例中TBI后立即发生的鞘脂综合分布变化。在这项研究中,在mTBI后的小鼠的脑组织和血浆中的急性期检查鞘脂代谢物组成。
    方法:将野生型小鼠暴露于气流介导的mTBI,将左侧颅骨的爆炸暴露设置为50-psi,将0-psi指定为假。在TBI后1、3和7天的急性期,通过液相色谱-质谱法分析了脑组织和血浆中的鞘脂分布。同时,使用定量逆转录-聚合酶链反应分析脑组织内鞘脂代谢标志物的基因表达.通过非参数t检验(Mann-Whitney检验)和通过多重比较的Tukey校正来确定显著性(P值)。
    结果:在TBI后的脑组织中,1)酸性鞘磷脂酶(aSMase)在1天和3天显着升高,2)中性鞘磷脂酶(nSMase)在7天,3)1天的神经酰胺-1-磷酸水平,和4)在7天的单己糖神经酰胺(MHC)和鞘氨醇。在单个物种中,研究发现,在第1天,C18:0增加,C24:1神经酰胺(Cer)减少;在第3天,C20:0MHC增加;在第7天,MHCC18:0减少,MHCC24:1,鞘磷脂(SM)C18:0和C24:0增加。此外,许多鞘脂代谢基因在1天升高,随后在TBI后3天减少和7天缺席。在TBI后血浆中,1)第1天Cer和MHCC22:0显着降低,MHCC16:0增加;2)长链CerC24:1显着增加,MHC和SM中CerC24:0和C22:0显着降低3天;3)所有类别的SPL中C22:0显着增加(Cer,MHC和SM)以及在第7天时CerC24:1,MHCC24:1和MHCC24:0的降低。
    结论:鞘脂代谢产物组成的变化,特别是鞘磷脂酶和短链神经酰胺,可能有助于TBI早期神经炎性事件的诱导和调节,提出新诊断的潜在目标,预后,以及未来的治疗策略。
    BACKGROUND: Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI.
    METHODS: Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey\'s correction for multiple comparisons.
    RESULTS: In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days.
    CONCLUSIONS: Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在过去的20年中,炎症性肠病(IBD)的发病率有所增加。各种各样的原因,生理和环境,有助于IBD的开始和进展,使疾病管理具有挑战性。目前的治疗方案针对免疫反应的各个方面,以抑制肠道炎症;然而,它们在保持缓解方面的有效性,它们的副作用,随着时间的推移,患者的反应丧失需要进一步调查。在IBD的多种原因中找到共同的线索对于开发稳健的治疗选择至关重要。鞘脂是在所有细胞类型中普遍产生的进化保守的生物活性脂质。这个多样化的脂质家族涉及多种基本的,但有时反对,增殖和凋亡等过程。作为肠道疾病的调节因子,鞘脂是理解IBD的潜在基石。在本文中,我们将描述宿主和微生物衍生的鞘脂的作用,因为它们与肠道健康和IBD的许多因素有关。
    The incidence of inflammatory bowel disease (IBD) has increased over the last 20 years. A variety of causes, both physiological and environmental, contribute to the initiation and progression of IBD, making disease management challenging. Current treatment options target various aspects of the immune response to dampen intestinal inflammation; however, their effectiveness at retaining remission, their side effects, and loss of response from patients over time warrant further investigation. Finding a common thread within the multitude causes of IBD is critical in developing robust treatment options. Sphingolipids are evolutionary conserved bioactive lipids universally generated in all cell types. This diverse lipid family is involved in a variety of fundamental, yet sometimes opposing, processes such as proliferation and apoptosis. Implicated as regulators in intestinal diseases, sphingolipids are a potential cornerstone in understanding IBD. Herein we will describe the role of host- and microbial-derived sphingolipids as they relate to the many factors of intestinal health and IBD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    母乳中含有许多与婴儿免疫系统成熟和肠道微生物群发育有关的因素。这些因素包括转化生长因子-β1和2,免疫球蛋白A,和乳铁蛋白.母乳因素也可能影响婴儿的表皮分化和角质层(SC)屏障,但是没有研究报告在婴儿期随着时间的推移这些关联。在这项单中心探索性研究中,我们使用共聚焦拉曼光谱在0,1,2,6和12月龄测量了在我们医院出生的39名婴儿的SC分子成分.确定了母亲母乳的母乳因子浓度。在每个年龄和SC深度下,对SC和母乳因子的每个分子成分估计了两个数据集的相关系数。结果表明,婴儿时期的母乳因素和SC的分子成分与婴儿月龄和SC深度部分相关,提示母乳因素影响SC成分的成熟。这些发现可能会提高对与皮肤屏障异常相关的皮肤病的发病机理的理解。
    Breast milk contains numerous factors that are involved in the maturation of the immune system and development of the gut microbiota in infants. These factors include transforming growth factor-β1 and 2, immunoglobin A, and lactoferrin. Breast milk factors may also affect epidermal differentiation and the stratum corneum (SC) barrier in infants, but no studies examining these associations over time during infancy have been reported. In this single-center exploratory study, we measured the molecular components of the SC using confocal Raman spectroscopy at 0, 1, 2, 6, and 12 months of age in 39 infants born at our hospital. Breast milk factor concentrations from their mothers\' breast milk were determined. Correlation coefficients for the two datasets were estimated for each molecular component of the SC and breast milk factor at each age and SC depth. The results showed that breast milk factors and molecular components of the SC during infancy were partly correlated with infant age in months and SC depth, suggesting that breast milk factors influence the maturation of the SC components. These findings may improve understanding of the pathogenesis of skin diseases associated with skin barrier abnormalities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然人们对鞘脂已经了解了很多,最初以它们类似狮身人面像的神秘属性命名,关于神经酰胺组合物对鞘糖脂(GSL)的合成和/或行为的可能影响,仍然存在许多未回答的问题。随着时间的推移,对其神经酰胺成分的研究,含有GSL脂质部分的鞘氨醇碱,通常与为确定碳水化合物部分的作用而进行的那些不同。由于可以从神经酰胺衍生的GSL类别的数量,这篇综述集中在神经酰胺在一个GSL类的合成/功能中的可能作用,衍生自葡萄糖神经酰胺(Glc-Cer),即唾液酸化神经节衍生物,最初表征并命名为神经节苷脂(GG),因为它们存在于神经节细胞中。虽然人们对它们的合成和功能了解很多,仍在学习很多东西。例如,只有在过去的15-20年左右,神经酰胺的脂肪酰基成分影响其运输到高尔基体不同部位的机制,用于合成Glu-或半乳糖基-Cer(Gal-Cer)和更复杂的GSL,已定义。仍有待充分解决的问题,例如(1)神经酰胺组合物是否会影响部分糖基化的GSL运输到其碳水化合物链可以延长或影响催化该延长的糖基转移酶活性的位点;(2)控制具有相同碳水化合物组成但神经酰胺组成不同的GG的神经酰胺组成差异的因素,反之亦然;(3)神经酰胺组成的改变如何影响GG的功能,以及如何将其应用于这种疾病的发展;在正常组织以及与疾病相关的GSL中发现的单个类别的完整结构的可更新数据库的可用性将促进该领域的研究。
    While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    2型糖尿病患者血清中棕榈酸(PA)水平升高,这可能导致β细胞损伤。铁性凋亡的参与,脂毒性β细胞损伤中的氧化性细胞死亡形式仍不确定.这里,我们已经证明PA诱导细胞内脂质过氧化,细胞内Fe2+含量增加,细胞内谷胱甘肽过氧化物酶4(GPX4)表达降低。此外,PA引起胰岛和INS-1细胞的明显变化,如线粒体萎缩和膜密度增加。此外,铁凋亡抑制剂的存在对PA诱导的β细胞损伤具有显著的缓解作用。机械上,PA增加神经酰胺含量和c-JunN末端激酶(JNK)磷酸化。神经酰胺合成酶抑制剂可有效减轻PA诱导的β细胞损伤和GPX4/Fe2+异常,同时抑制JNK磷酸化。此外,JNK抑制剂SP600125改善了PA诱导的细胞损伤。总之,通过促进神经酰胺合成,PA抑制GPX4的表达并增加细胞内Fe2以诱导β细胞铁凋亡。此外,JNK可能是神经酰胺触发的β细胞脂毒性铁凋亡的下游机制。
    Individuals with type 2 diabetes mellitus frequently display heightened levels of palmitic acid (PA) in their serum, which may lead to β-cell damage. The involvement of ferroptosis, a form of oxidative cell death in lipotoxic β-cell injury remains uncertain. Here, we have shown that PA induces intracellular lipid peroxidation, increases intracellular Fe2+ content and decreases intracellular glutathione peroxidase 4 (GPX4) expression. Furthermore, PA causes distinct changes in pancreatic islets and INS-1 cells, such as mitochondrial atrophy and increased membrane density. Furthermore, the presence of the ferroptosis inhibitor has a significant mitigating effect on PA-induced β-cell damage. Mechanistically, PA increased ceramide content and c-Jun N-terminal kinase (JNK) phosphorylation. The ceramide synthase inhibitor effectively attenuated PA-induced β-cell damage and GPX4/Fe2+ abnormalities, while inhibiting JNK phosphorylation. Additionally, the JNK inhibitor SP600125 improved PA-induced cell damage. In conclusion, by promoting ceramide synthesis, PA inhibited GPX4 expression and increased intracellular Fe2+ to induce β-cell ferroptosis. Moreover, JNK may be a downstream mechanism of ceramide-triggered lipotoxic ferroptosis in β-cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    食品级二氧化钛(E171)和氧化锌纳米颗粒(ZnONP)是人类消费的常见食品添加剂。我们检查了两种化合物对口服暴露90天的Wistar大鼠的多器官毒性。大鼠分为三组:(1)对照组(生理盐水),(2)E171暴露,和(3)ZnONPs暴露。用苏木精-伊红(HE)染色和透射电子显微镜(TEM)进行组织学检查。神经酰胺(Cer),3-硝基酪氨酸(NT),免疫荧光法检测溶酶体相关膜蛋白2(LAMP-2)。观察到相关的组织学变化:组织紊乱,炎性细胞浸润,和线粒体损伤。Cer的水平增加,NT,在肝脏中观察到LAMP-2,肾,E171和ZnONPs暴露大鼠的大脑,以及暴露于ZnONPs的大鼠心脏。E171上调主动脉和心脏中的Cer和NT水平,而ZnONPs在主动脉中上调它们。两种NP均增加肠中的LAMP-2表达。总之,长期口腔暴露于金属NPs会导致多器官损伤,反映了这些食品添加剂对人类健康的威胁。我们的结果表明ROS之间的复杂相互作用,Cer,LAMP-2和NT可能在NP损伤期间调节器官功能。
    Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are common food additives for human consumption. We examined multi-organ toxicity of both compounds on Wistar rats orally exposed for 90 days. Rats were divided into three groups: (1) control (saline solution), (2) E171-exposed, and (3) ZnO NPs-exposed. Histological examination was performed with hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Ceramide (Cer), 3-nitrotyrosine (NT), and lysosome-associated membrane protein 2 (LAMP-2) were detected by immunofluorescence. Relevant histological changes were observed: disorganization, inflammatory cell infiltration, and mitochondrial damage. Increased levels of Cer, NT, and LAMP-2 were observed in the liver, kidney, and brain of E171- and ZnO NPs-exposed rats, and in rat hearts exposed to ZnO NPs. E171 up-regulated Cer and NT levels in the aorta and heart, while ZnO NPs up-regulated them in the aorta. Both NPs increased LAMP-2 expression in the intestine. In conclusion, chronic oral exposure to metallic NPs causes multi-organ injury, reflecting how these food additives pose a threat to human health. Our results suggest how complex interplay between ROS, Cer, LAMP-2, and NT may modulate organ function during NP damage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    足细胞的健康对于维持肾脏中适当的肾小球滤过至关重要。来自足细胞的交叉足过程形成狭缝隔膜,其通过大小和电荷选择性来调节分子的过滤。丰富的脂筏,它们是富含胆固醇和鞘脂的有序膜结构域,近狭缝隔膜突出脂质代谢在足细胞健康中的重要性。新兴研究表明,鞘脂代谢通过结构和信号作用对足细胞健康的重要性。鞘脂代谢失调已被证明会导致足细胞损伤并驱动肾小球疾病进展。在这次审查中,我们讨论了鞘脂的结构和代谢,以及它们在适当足细胞功能中的作用,以及鞘脂代谢的改变如何导致足细胞损伤并推动肾小球疾病进展。
    Podocyte health is vital for maintaining proper glomerular filtration in the kidney. Interdigitating foot processes from podocytes form slit diaphragms which regulate the filtration of molecules through size and charge selectivity. The abundance of lipid rafts, which are ordered membrane domains rich in cholesterol and sphingolipids, near the slit diaphragm highlights the importance of lipid metabolism in podocyte health. Emerging research shows the importance of sphingolipid metabolism to podocyte health through structural and signaling roles. Dysregulation in sphingolipid metabolism has been shown to cause podocyte injury and drive glomerular disease progression. In this review, we discuss the structure and metabolism of sphingolipids, as well as their role in proper podocyte function and how alterations in sphingolipid metabolism contributes to podocyte injury and drives glomerular disease progression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂质代谢受损是心血管疾病(CVD)的关键驱动因素。在这方面,神经酰胺在循环中以及代谢活跃组织和动脉粥样硬化斑块中的积累是脂质代谢脱轨的直接后果。神经酰胺可能在受损的脂质代谢和CVD之间存在联系。的确,虽然一方面神经酰胺与CVD的发病机理有关,在其他特定的神经酰胺亚种上,也被提议作为主要不良心血管事件的预测因子。本文将对神经酰胺在CVD发病机制中的作用进行综述。以及它们的致病机制。此外,手稿将涵盖神经酰胺作为预测心血管事件的生物标志物的重要性和饮食的作用,在营养和膳食模式方面,调节神经酰胺代谢和体内平衡。
    Impaired lipid metabolism is a pivotal driver of cardiovascular disease (CVD). In this regard, the accumulation of ceramides within the circulation as well as in metabolically active tissues and atherosclerotic plaques is a direct consequence of derailed lipid metabolism. Ceramides may be at the nexus between impaired lipid metabolism and CVD. Indeed, although on one hand ceramides have been implicated in the pathogenesis of CVD, on the other specific ceramide subspecies have also been proposed as predictors of major adverse cardiovascular events. This review will provide an updated overview of the role of ceramides in the pathogenesis of CVD, as well as their pathogenetic mechanisms of action. Furthermore, the manuscript will cover the importance of ceramides as biomarkers to predict cardiovascular events and the role of diet, both in terms of nutrients and dietary patterns, in modulating ceramide metabolism and homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录机制建立和维持复杂的遗传和蛋白质网络以控制细胞状态转变。造血转录因子GATA1是红细胞生成和巨核细胞生成的主要调节因子,和人类GATA1遗传变异导致贫血和巨核细胞白血病。多组分析显示,GATA1控制转运蛋白和代谢酶的表达,这些转运蛋白和代谢酶决定了内源性小分子的细胞内水平,包括血红素,金属离子,和鞘脂。除了它作为血红蛋白成分的典型功能,血红素通过依赖或不依赖血红素结合转录因子BACH1的机制促进或拮抗GATA1功能以调节红细胞生成。GATA1调节编码血红素生物合成酶和BACH1的基因的表达。GATA1通过调节编码鞘脂代谢酶的基因维持红细胞分化过程中生物活性神经酰胺的稳态。破坏神经酰胺稳态会损害关键的细胞因子信号传导,并且对红系细胞有害。在红系成熟期间,GATA1诱导锌转运蛋白转换,有利于出口与进口,从而决定了细胞内的锌水平,成红细胞存活率,和差异化。总的来说,这些研究支持了一种新兴的范式,其中GATA因子依赖性转录机制控制内源性小分子和小分子依赖性反馈回路的细胞内水平,这些反馈回路是转录因子活性的重要效应因子。基因组功能,和细胞状态转换。
    Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号