Centrosomal Associated Proteins

  • 文章类型: Journal Article
    初级纤毛是基于微管的感觉细胞器,在信号传导途径和细胞周期进程中起关键作用。原发性纤毛的结构和/或功能的缺陷导致统称为纤毛病的发育疾病。然而,初级纤毛的成分和调节机制尚不完全清楚。近年来,表观遗传修饰剂SMYD3的活性已被证明在细胞周期进程的调节中起关键作用。然而,SMYD3,一种组蛋白/赖氨酸甲基转移酶,有助于纤毛生成的调节仍然未知。这里,我们报道SMYD3通过直接和间接调节纤毛相关成分驱动纤毛发生。我们证明SMYD3是远端附件的新型组件,是中心附件组装所必需的。SMYD3的丢失降低了纤毛细胞的百分比,并导致了粗毛的形成。我们证明了SMYD3调节中心体蛋白(Cep164,Fbf1,Ninein,Ttbk2和Cp110)以及对纤毛形成和维持重要的步内转运蛋白(Ift54和Ift140)的运输,分别。此外,我们表明SMYD3调节纤毛基因的转录,并与C2cd3,Cep164,Ttbk2,Dync2h1和Cp110的启动子区域结合。这项研究提供了对SMYD3在纤毛生物学中的作用的见解,并表明SMYD3介导的纤毛形成/功能可能与纤毛依赖性信号有关。
    The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中心体扩增是癌症的标志,并且PLK4是癌症相关中心体扩增的负责因素之一。还显示增加的PLK4水平有助于在哺乳动物组织中产生具有中心粒扩增的细胞作为嗅觉神经元祖细胞。PLK4过表达产生中心粒玫瑰花结(CR)结构,其每个具有多于两个中心粒。长期PLK4过表达结果与中心体扩增,但是尚未详细研究CRs中扩增中心粒的成熟和PLK4诱导的扩增中心体的连接。这里,我们显示了产生具有2个以上中心粒玫瑰花结的大型簇状中心体的证据,并将这些结构定义为在2个连续细胞周期中具有高PLK4水平的细胞中的中心粒玫瑰花结簇(CRC).此外,我们显示PLK4诱导的CRs遵循正常的中心体成熟过程,并在PLK4诱导后的第二个细胞周期中产生与规范的中心体连接蛋白C-Nap1,Rootletin和Cep68相互连接的CRC结构。C-Nap1和Rootletin敲除导致细胞中PLK4水平增加,而Nek2敲除抑制前中期CRC的分离,提供CRC结构与中心体连接蛋白结合的功能证据。一起来看,这些结果表明了PLK4诱导的中心体扩增的细胞周期依赖性模型,该模型发生在2个连续的细胞周期中:(i)第一个细胞周期中的CR状态,和(ii)第二细胞周期中的CRC状态。
    Centrosome amplification is a hallmark of cancer and PLK4 is one of the responsible factors for cancer associated centrosome amplification. Increased PLK4 levels was also shown to contribute to generation of cells with centriole amplification in mammalian tissues as olfactory neuron progenitor cells. PLK4 overexpression generates centriole rosette (CR) structures which harbor more than two centrioles each. Long term PLK4 overexpression results with centrosome amplification, but the maturation of amplified centrioles in CRs and linking of PLK4 induced amplified centrosomes has not yet been investigated in detail. Here, we show evidence for generation of large clustered centrosomes which have more than 2 centriole rosettes and define these structures as centriole rosette clusters (CRCs) in cells that have high PLK4 levels for 2 consecutive cell cycles. In addition, we show that PLK4 induced CRs follow normal centrosomal maturation processes and generate CRC structures that are inter-connected with canonical centrosomal linker proteins as C-Nap1, Rootletin and Cep68 in the second cell cycle after PLK4 induction. Increased PLK4 levels in cells with C-Nap1 and Rootletin knock-out resulted with distanced CRs and CRCs in interphase, while Nek2 knock-out inhibited separation of CRCs in prometaphase, providing functional evidence for the binding of CRC structures with centrosomal linker proteins. Taken together, these results suggest a cell cycle dependent model for PLK4 induced centrosome amplification which occurs in 2 consecutive cell cycles: (i) CR state in the first cell cycle, and (ii) CRC state in the second cell cycle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号