Central nervous system oxygen toxicity

  • 文章类型: Journal Article
    中枢神经系统氧中毒(CNS-OT)是高压氧(HBO)治疗的并发症,有限的预防和治疗选择。在这项研究中,我们旨在探讨聚乙二醇300(PEG300)对CNS-OT的影响及其潜在机制。通过Morris水迷宫评估了正常压力条件下小鼠的运动和认知功能,被动主动回避,和旋转杆测试。在给药后以6个绝对大气压(ATA)施用HBO30分钟。记录小鼠惊厥的潜伏期,提取海马组织进行生化实验。我们的实验结果表明,PEG300延长了CNS-OT小鼠的惊厥潜伏期,降低海马组织的氧化应激和炎症水平。此外,PEG300通过上调过氧化物酶体增殖物激活的受体γ-共激活因子1-α(PGC-1α)保持线粒体完整性并维持海马组织的线粒体膜电位。在施用PGC-1a的激动剂ZLN005后,这种保护作用得到增强。因此,我们的研究表明,PEG300可能通过上调PGC-1α表达和保持线粒体健康而发挥保护作用,为CNS-OT治疗提供了有希望的前景。
    Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在海底作业和高压医学中呼吸高压氧(HBO2)。然而,潜水员和患者呼吸HBO2会增加中枢神经系统氧毒性(CNS-OT)的风险,最终表现为产生心动过速和高血压的交感神经刺激,换气过度,最终导致全身性癫痫发作和心源性肺水肿.在这项研究中,我们已经检验了皮肤电活动(EDA)变化的假设,测量交感神经系统的激活,先于癫痫发作的大鼠呼吸5个大气压绝对(ATA)HBO2。无线电遥测和啮齿动物系绳设备适用于密封的高压舱内。拴系的大鼠在用空气或100%O2冲洗的通风动物室内自由移动。将动物室和高压室(空气)以约1个大气压/分钟并行加压。EDA活动与皮层脑电图(EEG)活动同时记录,核心体温,和环境压力。我们使用原始EDA(TVSymp)的时变频谱分析捕获了EDA的动力学,以前被开发作为人类交感神经紧张评估的工具,调整以检测CNS-OT癫痫发作前大鼠EDA的动态变化。结果表明,在HBO2引起的癫痫发作前,平均(±SD)1.9±1.6分钟,EDA记录得出的TVSymp值的幅度显着增加。这些结果,如果在人类身上得到证实,支持使用TVSymp活动的变化作为潜水员和患者即将发生和可能致命的癫痫发作的早期“生理标记”。
    Hyperbaric oxygen (HBO2) is breathed during undersea operations and in hyperbaric medicine. However, breathing HBO2 by divers and patients increases the risk of central nervous system oxygen toxicity (CNS-OT), which ultimately manifests as sympathetic stimulation producing tachycardia and hypertension, hyperventilation, and ultimately generalized seizures and cardiogenic pulmonary edema. In this study, we have tested the hypothesis that changes in electrodermal activity (EDA), a measure of sympathetic nervous system activation, precedes seizures in rats breathing 5 atmospheres absolute (ATA) HBO2. Radio telemetry and a rodent tether apparatus were adapted for use inside a sealed hyperbaric chamber. The tethered rat was free to move inside a ventilated animal chamber that was flushed with air or 100% O2. The animal chamber and hyperbaric chamber (air) were pressurized in parallel at ~1 atmosphere/min. EDA activity was recorded simultaneously with cortical electroencephalogram (EEG) activity, core body temperature, and ambient pressure. We have captured the dynamics of EDA using time-varying spectral analysis of raw EDA (TVSymp), previously developed as a tool for sympathetic tone assessment in humans, adjusted to detect the dynamic changes of EDA in rats that occur prior to onset of CNS-OT seizures. The results show that a significant increase in the amplitude of TVSymp values derived from EDA recordings occurs on average (±SD) 1.9 ± 1.6 min before HBO2-induced seizures. These results, if corroborated in humans, support the use of changes in TVSymp activity as an early \"physio-marker\" of impending and potentially fatal seizures in divers and patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    During diving, central nervous system oxygen toxicity may cause drowning or barotrauma, which has dramatically limited the working benefits of hyperbaric oxygen in underwater operations and clinical applications. The aim of this study is to understand the effects and the underlying mechanism of heat shock protein 70 on central nervous system oxygen toxicity and its mechanisms in vivo and in vitro. Rats were given geranylgeranylacetone (800 mg/kg) orally to induce hippocampal expression of heat shock protein 70 and then treated with hyperbaric oxygen. The time course of hippocampal heat shock protein 70 expression after geranylgeranylacetone administration was measured. Seizure latency and first electrical discharge were recorded to evaluate the effects of HSP70 on central nervous system oxygen toxicity. Effects of inhibitors of nitric oxide synthase and nuclear factor-κB on the seizure latencies and changes in nitric oxide, nitric oxide synthase, and nuclear factor-κB levels in the hippocampus tissues were examined. In cell experiments, hippocampal neurons were transfected with a virus vector carrying the heat shock protein 70 gene (H3445) before hyperbaric oxygen treatment. Cell viability, heat shock protein 70 expression, nitric oxide, nitric oxide synthase, and NF-κB levels in neurons were measured. The results showed that heat shock protein 70 expression significantly increased and peaked at 48 h after geranylgeranylacetone was given. Geranylgeranylacetone prolonged the first electrical discharge and seizure latencies, which was reversed by neuronal nitric oxide synthase, inducible nitric oxide synthase and NF-κB inhibitors. Nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels in the hippocampus were significantly increased after hyperbaric oxygen exposure, but reversed by geranylgeranylacetone, while heat shock protein 70 inhibitor quercetin could inhibit this effect of geranylgeranylacetone. In the in vitro study, heat shock protein 70-overexpression decreased the nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels as well as the cytoplasm/nucleus ratio of nuclear factor-κB and protected neurons from hyperbaric oxygen-induced cell injury. In conclusion, overexpression of heat shock protein 70 in hippocampal neurons may protect rats from central nervous system oxygen toxicity by suppression of neuronal nitric oxide synthase and inducible nitric oxide synthase-mediated nitric oxide production and translocation of nuclear factor-κB to nucleus. Impact statement Because the pathogenesis of central nervous system oxygen toxicity (CNS-OT) remains unclear, there are few interventions available. To develop an efficient strategy against CNS-OT, it is necessary to understand its pathogenesis and in particular, the relevant key factors involved. This study examined the protective effects of heat shock protein 70 (HSP70) on CNS-OT via in vivo and in vitro experiments. Our results indicated that overexpression of HSP70 in hippocampal neurons may protect rats from CNS-OT by suppression of nNOS and iNOS-mediated NO production and the activation of NF-κB. These findings contribute to clarification of the role of HSP70 in CNS-OT and provide us a potential novel target to prevent CNS-OT. Clarification of the involvement of NO, NOS and NF-κB provides new insights into the mechanism of CNS-OT and may help us to develop new approach against it by interfering these molecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO\'s application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine\'s mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5\'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5\'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Findings regarding blood glucose level (BGL) on exposure to hyperbaric oxygen (HBO) are contradictory. We investigated the influence of HBO on BGL, and of BGL on latency to central nervous system oxygen toxicity (CNS-OT). The study was conducted on five groups of rats: Group 1, exposure to oxygen at 2.5 atmospheres absolute (ATA), 90 min/day for 7 days; Group 2, exposure to oxygen once a week from 2 to 6 ATA in increments of 1 ATA/wk, for a period of time calculated as 60% of the latency to CNS-OT (no convulsions); Group 3, exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21; Group 4, received 10 U/kg insulin to induce hypoglycemia before exposure to HBO; Group 5, received 33% glucose to induce hyperglycemia before exposure to HBO. Blood samples were drawn before and after exposures for measurement of BGL. No change was observed in BGL after exposure to oxygen at 2.5 ATA, 90 min/day for 7 days. BGL was significantly elevated after exposure to oxygen at 6 ATA until the appearance of convulsions, and following exposure to 4, 5, and 6 ATA without convulsions (P < 0.01). No change was observed in BGL after exposure to 6 ATA breathing a gas mixture with a pO2 of 0.21. Hypoglycemia shortened latency to CNS oxygen toxicity, whereas hyperglycemia had no effect. Our results demonstrate an influence of HBO exposure on elevation of BGL, starting at 4 ATA. This implies that BGL may serve as a marker for the generation of CNS-OT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Abstract Tonic-clonic seizures typify central nervous system oxygen toxicity (CNS-OT) in humans and animals exposed to high levels of oxygen, as are encountered during scuba diving. We previously demonstrated that high doses of pseudoephedrine (PSE) decrease the latency to seizure (LS) for CNS-OT in young male rats. This study investigated whether female rats respond similarly to PSE and hyperbaric oxygen (HBO). We implanted 60 virgin stock (VS) and 54 former breeder (FB) female rats with radio-telemetry devices that measured brain electrical activity. One week later, rats were gavaged with saline or PSE in saline (40, 80, 120, 160, or 320 mg/kg) before diving to five atmospheres absolute in 100% oxygen. The time between reaching maximum pressure and exhibiting seizure was LS. Vaginal smears identified estrus cycle phase. PSE did not decrease LS for VS or FB, primarily because they exhibited low LS for all conditions tested. VS had shorter LS than males at 0, 40, and 80 mg/kg (-42, -49, and -57%, respectively). FB also had shorter LS than males at 0, 40, and 80 mg/kg (-60, -86, and -73%, respectively). FB were older than VS (286 ± 10 days vs. 128 ± 5 days) and weighed more than VS (299 ± 2.7 g vs. 272 ± 2.1 g). Males tested were younger (88 ± 2 days), heavier (340 ± 4.5 g), and gained more weight postoperatively (7.2 ± 1.6 g) than either VS (-0.4 ± 1.5 g) or FB (-1.6 ± 1.5 g); however, LS correlated poorly with age, body mass, change in body mass, and estrus cycle phase. We hypothesize that differences in sex hormones underlie females\' higher susceptibility to CNS-OT than males.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    We examined the hypothesis that repeated exposure to non-convulsive hyperbaric oxygen (HBO) as preconditioning provides protection against central nervous system oxygen toxicity (CNS-OT). Four groups of rats were used in the study. Rats in the control and the negative control (Ctl-) groups were kept in normobaric air. Two groups of rats were preconditioned to non-convulsive HBO at 202 kPa for 1h once every other day for a total of three sessions. Twenty-four hours after preconditioning, one of the preconditioned groups and the control rats were exposed to convulsive HBO at 608 kPa, and latency to CNS-OT was measured. Ctl- rats and the second preconditioned group (PrC-) were not subjected to convulsive HBO exposure. Tissues harvested from the hippocampus and frontal cortex were evaluated for enzymatic activity and nitrotyrosine levels. In the group exposed to convulsive oxygen at 608 kPa, latency to CNS-OT increased from 12.8 to 22.4 min following preconditioning. A significant decrease in the activity of glutathione reductase and glucose-6-phosphate dehydrogenase, and a significant increase in glutathione peroxidase activity, was observed in the hippocampus of preconditioned rats. Nitrotyrosine levels were significantly lower in the preconditioned animals, the highest level being observed in the control rats. In the cortex of the preconditioned rats, a significant increase was observed in glutathione S-transferase and glutathione peroxidase activity. Repeated exposure to non-convulsive HBO provides protection against CNS-OT. The protective mechanism involves alterations in the enzymatic activity of the antioxidant system and lower levels of peroxynitrite, mainly in the hippocampus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    We have previously determined the thresholds for CO2 detection (conscious recognition of elevated CO2) and retention in male divers, beyond which a diving candidate should not continue his diving activity due to an increased risk of CNS oxygen toxicity. The purpose of the present study was to establish whether there is a difference in end tidal PCO2 between male and female divers who use oxygen-enriched gas mixtures. Ventilatory and perceptual responses to variations in inspired CO2 (range 0-42 mm Hg) were assessed during moderate exercise in 18 males and 18 females. End tidal PCO2 was lower in the female divers when breathing oxygen with 42 mm Hg CO2 (58.2±3.0 mm Hg vs. 61.5±4.5 mm Hg, P<0.03). These results suggest that female divers have a lower end tidal CO2 than males when breathing a hyperoxic gas mixture during exercise, which might imply that women are less susceptible to CNS oxygen toxicity than men.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号