Cell wall peptidoglycan

  • 文章类型: Journal Article
    The increasing incidence of primary and recurring Clostridioides difficile infections (CDI), which evade current treatment strategies, reflects the changing biology of C difficile. Here, we describe a putative plasmid-mediated mechanism potentially driving decreased sensitivity of C difficile to vancomycin treatment. We identified a broad host range transferable plasmid in a C difficile strain associated with lack of adequate response to vancomycin treatment. The transfer of this plasmid to a vancomycin-susceptible C difficile isolate decreased its susceptibility to vancomycin in vitro and resulted in more severe disease in a humanized mouse model. Our findings suggest plasmid acquisition in the gastrointestinal tract to be a possible mechanism underlying vancomycin treatment failure in patients with CDI, but further work is needed to characterize the mechanism by which plasmid genes determine vancomycin susceptibility in C difficile.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Phage-encoded cell wall peptidoglycan hydrolyzing enzymes, called endolysins, are essential for efficient release of virions from bacteria, and show species-specific killing of the host. We have demonstrated previously that the interaction between N-terminal catalytic and C-terminal cell wall binding domains of mycobacteriophage D29 endolysin makes the enzyme inactive in Escherichiacoli. Here, we demonstrate that such interaction occurs intramolecularly and is facilitated by a charged linker that connects the two domains. We also show that linker composition is crucial for the inactivation of PG hydrolase in E. coli. Such knowledge will immensely help in bioengineering of endolysins with narrow or broad spectrum antimicrobial activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: (S)-Leucoxine, isolated from the Colombian Lauraceae tree Rhodostemonodaphne crenaticupula Madriñan, was found to inhibit the growth of Mycobacterium tuberculosis H37Rv. A biomimetic approach for the chemical synthesis of a wide array of 1-substituted tetrahydroisoquinolines was undertaken with the aim of elucidating a common pharmacophore for these compounds with novel mode(s) of anti-TB action.
    METHODS: Biomimetic Pictet-Spengler or Bischler-Napieralski synthetic routes were employed followed by an evaluation of the biological activity of the synthesized compounds.
    RESULTS: In this work, the synthesized tetrahydroisoquinolines were found to inhibit the growth of M. tuberculosis H37Rv and affect its whole-cell phenotype as well as the activity of the ATP-dependent MurE ligase, a key enzyme involved in the early stage of cell wall peptidoglycan biosynthesis.
    CONCLUSIONS: As the correlation between the MIC and the half-inhibitory enzymatic concentration was not particularly strong, there is a credible possibility that these compounds have pleiotropic mechanism(s) of action in M. tuberculosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号