Cell integration

  • 文章类型: Journal Article
    采用硫化物固体电解质(SE)的全固态锂电池(ASSLB)有望实现可持续的储能系统,具有能量密集的集成和关键的本质安全性。然而,它们仍然需要具有成本效益的制造以及将基于薄膜的SE分离器集成到大型电池中以实现可扩展的部署。这次审查,基于硫化物SE材料的概述,阐述了为什么实施基于薄膜的分离器是ASSLB批量生产的优先事项,并确定了捕获高质量薄硫化物SE膜的关键标准。此外,从材料可用性方面来看,膜处理,和细胞整合,主要的挑战和相关的策略被描述为满足这些标准在整个生产链提供一个现实的评估现状的硫化物SE膜。最后,提出了用于ASSLB的可扩展和可制造的硫化物SE膜的未来方向和前景。
    All-solid-state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy-dense integration and critical intrinsic safety, yet they still require cost-effective manufacturing and the integration of thin membrane-based SE separators into large-format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane-based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high-quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a need for developing novel treatment strategies. Transplantation of cells releasing γ-aminobutyric acid (GABA) could be used to counteract the imbalance between excitation and inhibition within epileptic neuronal networks. We generated GABAergic interneuron precursors from human embryonic stem cells (hESCs) and grafted them in the hippocampi of rats developing chronic SRSs after kainic acid-induced status epilepticus. Using whole-cell patch-clamp recordings, we characterised the maturation of the grafted cells into functional GABAergic interneurons in the host brain, and we confirmed the presence of functional inhibitory synaptic connections from grafted cells onto the host neurons. Moreover, optogenetic stimulation of grafted hESC-derived interneurons reduced the rate of epileptiform discharges in vitro. We also observed decreased SRS frequency and total time spent in SRSs in these animals in vivo as compared to non-grafted controls. These data represent a proof-of-concept that hESC-derived GABAergic neurons can exert a therapeutic effect on epileptic animals presumably through establishing inhibitory synapses with host neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Profilin-1 (PFN1) regulates actin polymerization and cytoskeletal growth. Despite the essential roles of PFN1 in cell integration, its subcellular function in keratinocyte has not been elucidated yet. Here we characterize the specific regulation of PFN1 in DNA damage response and repair machinery. PFN1 depletion accelerated DNA damage-mediated apoptosis exhibiting PTEN loss of function instigated by increased phosphorylated inactivation followed by high levels of AKT activation. PFN1 changed its predominant cytoplasmic localization to the nucleus upon DNA damage and subsequently restored the cytoplasmic compartment during the recovery time. Even though γH2AX was recruited at the sites of DNA double strand breaks in response to DNA damage, PFN1-deficient cells failed to recruit DNA repair factors, whereas control cells exhibited significant increases of these genes. Additionally, PFN1 depletion resulted in disruption of PTEN-AKT cascade upon DNA damage and CHK1-mediated cell cycle arrest was not recovered even after the recovery time exhibiting γH2AX accumulation. This might suggest PFN1 roles in regulating DNA damage response and repair machinery to protect cells from DNA damage. Future studies addressing the crosstalk and regulation of PTEN-related DNA damage sensing and repair pathway choice by PFN1 may further aid to identify new mechanistic insights for various DNA repair disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嗅鞘细胞(OEC),初级嗅觉神经系统的神经胶质细胞,支持嗅觉神经的自然再生。因此,OEC表现出支持神经元存活和生长的独特性质。OECs的移植正在成为脊髓损伤的一种有希望的治疗方法;然而,动物和人类的结果都是可变的,该方法需要改进和标准化。功能结果差异的主要原因是移植细胞的存活和整合的可变性。脊髓再生成功的关键因素。这里,我们回顾了过去10年在啮齿动物模型中OEC移植的结果,专注于移植细胞的存活和整合。我们确定了影响OEC生存的关键因素:损伤类型,移植细胞的来源,与其他细胞类型共同移植,细胞的数量和浓度,交货方法,受伤后的移植时间。我们发现,两个关键问题是阻碍OEC移植的优化和标准化:缺乏(1)可靠的方法来识别移植细胞,和(2)用于OEC交付的三维系统。开发OEC移植作为脊髓损伤的成功和标准化治疗方法,我们必须解决这些问题,并增加我们对影响OEC生存的复杂参数的理解。
    Olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system, support the natural regeneration of the olfactory nerve that occurs throughout life. OECs thus exhibit unique properties supporting neuronal survival and growth. Transplantation of OECs is emerging as a promising treatment for spinal cord injury; however, outcomes in both animals and humans are variable and the method needs improvement and standardization. A major reason for the discrepancy in functional outcomes is the variability in survival and integration of the transplanted cells, key factors for successful spinal cord regeneration. Here, we review the outcomes of OEC transplantation in rodent models over the last 10 years, with a focus on survival and integration of the transplanted cells. We identify the key factors influencing OEC survival: injury type, source of transplanted cells, co-transplantation with other cell types, number and concentration of cells, method of delivery, and time of transplantation after the injury. We found that two key issues are hampering optimization and standardization of OEC transplantation: lack of (1) reliable methods for identifying transplanted cells, and (2) three-dimensional systems for OEC delivery. To develop OEC transplantation as a successful and standardized therapy for spinal cord injury, we must address these issues and increase our understanding of the complex parameters influencing OEC survival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Novel threads of discovery provide the basis for optimism for the development of a stem-cell-based strategy for the treatment of retinal blindness. Accordingly, achievement to suitable cell source with potential-to-long-term survival and appropriate differentiation can be an effective step in this direction.
    METHODS: After derivation of human adipose-derived mesenchymal stem cells (HAD-MSCs), they were stably transfected with a vector containing Turbo-green fluorescent protein (GFP) and JRed to be able to trace them after transplantation. Labeled HAD-MSCs were transplanted into the intact adult rat eye and their survival, integration, and migration during 6 months post-transplantation were assessed.
    RESULTS: The transplanted cells were traceable in the rat vitreous humor (VH) up until 90 days after transplantation, with gradual reduction in numbers, their adhesion and expansion capacity after recovery. These cells were also integrated into the ocular tissues. Nonetheless, some of the implanted cells succeeded to cross the blood-retina barrier (BRB) and accumulate in the spleen with time.
    CONCLUSIONS: The survival of the HAD-MSCs for a period of 90 days in VH and even longer period of up to 6 months in other eye tissues makes them a promising source to be considered in regenerative medicine of eye diseases. However, the potency of crossing the BRB by the implanted cells suggests that use of HAD-MSCs must be handled with extreme caution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号