Cell envelope

细胞包膜
  • 文章类型: Journal Article
    放线菌物种大多被认为是不运动的。最近的研究揭示了该门中鞭毛的退化进化以及与经典模型不同的鞭毛杆组成。此外,在链霉菌属中,已经报道了通过各种方式独立于鞭毛的运动性。和分枝杆菌。,但是潜在的机制仍然难以捉摸。
    Actinobacterial species are mostly thought to be nonmotile. Recent studies have revealed the degenerate evolution of flagella in this phylum and different flagellar rod compositions from the classical model. Moreover, flagella-independent motility by various means has been reported in Streptomyces spp. and Mycobacterium spp., but the underlying mechanisms remain elusive.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Rcs途径在非应激条件下被内膜蛋白IgaA抑制。假设这种抑制通过外膜锚定的RcsF与IgaA的结合而得以缓解。然而,RcsF结合触发信号传导的确切机制尚不清楚.这里,我们提出了1.8µ分辨率的晶体结构,捕获了IgaA和RcsF之间的相互作用。我们的比较结构分析,检查IgaA(IgaAp)的周质结构域的结合状态和未结合状态,突出了IgaAp内的旋转灵活性。相反,RcsF的构象在结合时保持不变。我们的体内和体外研究不支持涉及RcsF的稳定复合物模型,IgaAp,还有RcsDp.相反,我们证明了IgaAp以外的元素在IgaA和RcsD之间的相互作用中起作用。这些发现共同使我们能够提出通过IgaA跨内膜信号传导的潜在机制。
    The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然肠道细菌通常存在于动物肠道内,在病外坚持的能力是他们整体生活方式的重要组成部分,它可能有助于主机之间的传输。尽管潜在的重要性,已经确定了一些肠外生长和存活的遗传决定因素,即使是研究最好的模型,大肠杆菌。在这项工作中,因此,我们使用条形码转座子插入的全基因组文库来系统地鉴定对湖水中大肠杆菌适应性至关重要的基因的功能簇。我们的结果表明,途径的失活涉及维持外膜的完整性,核苷酸生物合成,和趋化性对大肠杆菌在这种肠外环境中的生长或存活产生负面影响。相比之下,另一组基因的失活显然有利于大肠杆菌在过滤湖水中的生长或持久性,导致这些突变体的丰度更高。这个小组包括rpoS,编码一般应激反应西格玛因子,和编码其他几个全球转录调节因子和RNA伴侣的基因,以及几个注释不良的基因。基于这种共同富集,我们将这些基因产物鉴定为RpoS活性的新型正调节因子。我们进一步观察到,尽管他们的增长得到了加强,具有非活性RpoS的大肠杆菌突变体在湖水中的生存力降低,并且它们在本地微生物群的存在下没有富集。这突出了大肠杆菌在宿主外生长的一般应激反应途径的双重性。
    Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    VI型分泌系统(T6SS)是广泛存在于革兰氏阴性细菌中的双管纳米机器。它的矛状Hcp管能够穿透相邻细胞,以进行细胞溶胶到细胞溶胶的蛋白质递送。然而,革兰氏阳性细菌被认为对这种T6SS作用是不可渗透的。在这里,我们报道了植物病原体的T6SS,Acidovoraxcitrulli(AC),可以提供Rhs家族核酸酶效应物RhsB,不仅可以杀死革兰氏阴性细菌,还可以杀死革兰氏阳性细菌。利用生物信息学,生物化学,和基因分析,我们系统地鉴定了T6SS分泌效应子,并确定RhsB是一种重要的抗菌效应子.RhsB包含一个N端PAAR结构域,中间Rhs域,和未知的C端结构域。RhsB在其N-和C-末端结构域都经历自切割,并且其分泌需要上游编码的伴侣EagT2和VgrG3。RhsB的毒性C端表现出DNase活性,这种毒性被两种下游免疫蛋白中的任何一种中和,RimB1和RimB2。rhsB的缺失显着削弱了杀死枯草芽孢杆菌的能力,而免疫蛋白RimB1或RimB2的异位表达则赋予了保护作用。我们证明了ACT6SS不仅可以有效地击败植物中的大肠杆菌和枯草芽孢杆菌,而且可以高效杀死其他细菌和真菌物种。总的来说,这些发现强调了T6SS在复杂环境中调节微生物组组成的能力的极大扩展。
    The type VI secretion system (T6SS) is a double-tubular nanomachine widely found in gram-negative bacteria. Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery. However, gram-positive bacteria have been considered impenetrable to such T6SS action. Here we report that the T6SS of a plant pathogen, Acidovorax citrulli (AC), could deliver an Rhs-family nuclease effector RhsB to kill not only gram-negative but also gram-positive bacteria. Using bioinformatic, biochemical, and genetic assays, we systematically identified T6SS-secreted effectors and determined that RhsB is a crucial antibacterial effector. RhsB contains an N-terminal PAAR domain, a middle Rhs domain, and an unknown C-terminal domain. RhsB is subject to self-cleavage at both its N- and C-terminal domains and its secretion requires the upstream-encoded chaperone EagT2 and VgrG3. The toxic C-terminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins, RimB1 and RimB2. Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection. We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B. subtilis in planta but also is highly potent in killing other bacterial and fungal species. Collectively, these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究旨在探讨punicalagin对副溶血弧菌的抗菌活性及其潜在的作用方式。副溶血性弧菌ATCC17802和RIMD2210633Sm暴露于punicalagin,和能源生产,膜电位,和信封渗透性,以及与细胞生物分子的相互作用,用多种荧光探针结合电泳和拉曼光谱进行测定。Punicalagin处理破坏了包膜完整性并诱导了细胞内ATP和pH的降低。1-N-苯基-萘胺(NPN)的摄取表明panicalagin削弱了外膜。Punicalagin破坏了细胞质膜,如膜去极化和细胞内钾离子泄漏所示,蛋白质,和核酸。电子显微镜观察可见punicalagin引起的细胞损伤。Further,凝胶电泳结合拉曼光谱分析显示punicalagin影响副溶血性弧菌的蛋白表达,对基因组DNA的完整性没有影响。因此,副溶血性弧菌的细胞包膜和蛋白质是punicalagin治疗的可攻击靶标。这些发现表明punicalagin可能有望作为一种天然抑菌剂来控制副溶血性弧菌的生长。
    This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    革兰氏阴性菌的生存和毒力需要适当的生物发生和外膜(OM)的维持,其密集地填充有β-桶OM蛋白(OMPs)。在到达OM之前,前体展开OMP(uOMP)必须穿过整个细胞包膜。周质伴侣和蛋白酶的网络在水性周质中保持这些膜蛋白的未折叠但有折叠能力的构象,同时防止了通路外的聚集。这些周质蛋白利用不同的策略,包括构象异质性,低聚,多价,和动力学分配,履行和规范他们的职能。各个周质参与者的冗余和独特特征协同作用,创建了一个能够应对不断变化的环境压力的蛋白质质量控制团队。
    The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肠病沙门氏菌(S.鼠伤寒)通过调节LpxC的蛋白水解来控制脂多糖(LPS)的生物合成,限速酶和临床前抗生素的目标。PbgA/YejM/LapC调节LpxC水平,并在对数到固定相转变时控制外膜(OM)LPS组成。LPS组装蛋白B(LapB/YciM)中的抑制物取代拯救pbgA-突变体鼠伤寒沙门氏菌的LPS和OM完整性缺陷。我们假设PbgA通过控制LapB结合LpxC的能力作为生长期的函数来调节LpxC蛋白水解。根据现有模型,当营养丰富时,PbgA结合并限制LapB与LpxC和FtsH相互作用,这限制了LpxC蛋白水解。然而,当营养有限时,LapB是否与PbgA解离以结合LpxC和FtsH以增强降解存在争议。我们试图检查这些模型并研究LapB的结构如何使沙门氏菌控制LpxC蛋白水解和LPS生物合成。沙门氏菌在固定阶段增加LapB水平以促进LpxC降解,这限制了脂质A核心的产生并增加了它们的存活率。lapB的删除,导致脂质A核心产生不受调节和LpxC过量,导致细菌生长迟缓。胞质溶胶-内膜界面附近的四肽重复序列足以使LapB结合LpxC,值得注意的是,LapB和PbgA在两个生长阶段都相互作用,然而,LpxC仅在固定阶段与LapB相关。我们的发现支持PbgA-LapB在鼠伤寒沙门氏菌中作为组成复合物存在,差异结合LpxC以控制LpxC蛋白水解并限制脂质A核心生物合成以响应环境的变化。抗生素耐药性一直是人类健康和农业的代价高昂的挫折。继续追求新的抗生素和目标势在必行,并且有必要对现有的更好的理解。LpxC是临床试验前抗生素的重要目标,可以消除多药耐药的革兰氏阴性菌感染。LapB是一种天然的LpxC抑制剂,其靶向LpxC降解并限制肠杆菌科中脂多糖的产生。与一些研究相反,本文的研究结果支持LapB保持复杂状态,而不是与其假定的负调节剂分离,PbgA/YejM/LapC,在LpxC蛋白水解增强的条件下。对这种关键的蛋白质-脂质信号网络的深入理解将导致未来的开发和完善可以特异性干扰的小分子。
    Salmonella enterica serovar Typhimurium (S. Typhimurium) controls lipopolysaccharide (LPS) biosynthesis by regulating proteolysis of LpxC, the rate-limiting enzyme and target of preclinical antibiotics. PbgA/YejM/LapC regulates LpxC levels and controls outer membrane (OM) LPS composition at the log-to-stationary phase transition. Suppressor substitutions in LPS assembly protein B (LapB/YciM) rescue the LPS and OM integrity defects of pbgA-mutant S. Typhimurium. We hypothesized that PbgA regulates LpxC proteolysis by controlling LapB\'s ability to bind LpxC as a function of the growth phase. According to existing models, when nutrients are abundant, PbgA binds and restricts LapB from interacting with LpxC and FtsH, which limits LpxC proteolysis. However, when nutrients are limited, there is debate whether LapB dissociates from PbgA to bind LpxC and FtsH to enhance degradation. We sought to examine these models and investigate how the structure of LapB enables salmonellae to control LpxC proteolysis and LPS biosynthesis. Salmonellae increase LapB levels during the stationary phase to promote LpxC degradation, which limits lipid A-core production and increases their survival. The deletion of lapB, resulting in unregulated lipid A-core production and LpxC overabundance, leads to bacterial growth retardation. Tetratricopeptide repeats near the cytosol-inner membrane interface are sufficient for LapB to bind LpxC, and remarkably, LapB and PbgA interact in both growth phases, yet LpxC only associates with LapB in the stationary phase. Our findings support that PbgA-LapB exists as a constitutive complex in S. Typhimurium, which differentially binds LpxC to control LpxC proteolysis and limit lipid A-core biosynthesis in response to changes in the environment.IMPORTANCEAntimicrobial resistance has been a costly setback for human health and agriculture. Continued pursuit of new antibiotics and targets is imperative, and an improved understanding of existing ones is necessary. LpxC is an essential target of preclinical trial antibiotics that can eliminate multidrug-resistant Gram-negative bacterial infections. LapB is a natural LpxC inhibitor that targets LpxC for degradation and limits lipopolysaccharide production in Enterobacteriaceae. Contrary to some studies, findings herein support that LapB remains in complex instead of dissociating from its presumed negative regulator, PbgA/YejM/LapC, under conditions where LpxC proteolysis is enhanced. Advanced comprehension of this critical protein-lipid signaling network will lead to future development and refinement of small molecules that can specifically interfere.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多极嗜细菌耐放射球菌的细胞包膜以其高度组织的结构和独特的功能特性而闻名。在这种细菌中,精确的规律性不仅表征S层,但它也延伸到下面的细胞包络层,导致密集和紧密排列的配置。这种规律性归因于位于外膜水平的最少三个蛋白质复合物。一起,它们构成了一个重复的结构单元,延伸穿过细胞包膜,有效地平铺整个细胞体。然而,对每层空置空间及其功能作用的全面掌握仍然有限。在这项研究中,我们通过将最先进的技术与结构计算相结合来深入研究这些方面。这种方法提供了重要的证据,支持与取决于环境条件的表面现象密切相关的进化压力。
    The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抗生素活性受到革兰氏阴性细胞包膜的物理结构的限制。洋葱伯克霍尔德氏菌(Bcc)的物种被认为是具有低通透性细胞包膜的固有多药耐药机会病原体。这里,我们重新检查了先前进行的化学-遗传筛选的条形码转座子突变体在银花芽孢杆菌K56-2,重点是细胞的包膜结构和功能过程。我们确定了对单一和多种抗生素类别的抗性在机械上重要的结构。例如,对新生霉素的易感性,阿维巴坦,和LpxC抑制剂,PF-04753299,连接到BpeAB-OprB外排泵,表明这些药物是这种泵的底物。肽聚糖前体合成中的缺陷特别增加了对环丝氨酸的敏感性,并揭示了一种新的推定氨基酸消旋酶,而分裂辅助蛋白的缺陷增加了对多种β-内酰胺的敏感性。此外,周质二硫键形成系统的破坏导致外膜完整性和β-内酰胺酶活性的多效性缺陷。我们的发现强调了细胞包膜结构和功能中抗性机制的分层。因此,我们指出了可以用于开发抗生素增效剂的方法。重要性革兰氏阴性细胞包膜是一种双层物理屏障,可保护细胞免受细胞外应激源的影响,比如抗生素。已知伯克霍尔德氏菌细胞包膜含有降低渗透性的额外修饰。我们通过重新检查暴露于抗生素小组的转座子突变体文库的数据,从全基因组的角度研究了伯克霍尔德氏菌细胞包膜因子对抗生素耐药性的影响。我们确定了外膜结构和功能缺陷的易感表型,周质,和细胞质。总的来说,我们表明,与细胞包膜相关的抗性是多方面的,并为开发抗生素增效剂提供了新的靶标。
    Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple β-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and β-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    革兰氏阴性细菌的外膜(OM)的生物发生涉及两个生长必需的过程,也就是说,通过Bam复合物插入β-桶外膜蛋白(OMPs),并通过Lpt途径的LptD/E复合物组装OM的含LPS的外小叶。这些方法直到最近才作为抗微生物药物的靶标受到关注。我们的实验室开发了一种简单的筛选工具来识别靶向破坏细胞包膜生物发生过程的化合物,其中Bam复合体的活动。该工具是基于这样的观察,即这种破坏触发细胞包膜应激反应系统,例如σE,Rcs,和Cpx的回答。实质上,特定的应激反应启动子与编码明亮荧光蛋白的基因融合,以用作一组易于监测的应激反应报告质粒。使用这些质粒,化合物触发这些应力系统,因此,可以通过诱导的应激反应的性质和动力学来鉴定假定破坏细胞包膜的生物发生。我们在这里描述了使用多孔板在高通量表型筛选中使用应激报告质粒。
    Biogenesis of the outer membrane (OM) of Gram-negative bacteria involves two processes essential for growth, that is, the insertion of β-barrel outer membrane proteins (OMPs) by the Bam complex and the assembly of the LPS-containing outer leaflet of the OM by the LptD/E complex from the Lpt pathway. These processes have only recently gained attention as targets for antimicrobial drugs. Our laboratory has developed a simple screening tool to identify compounds that target processes that disrupt the biogenesis of the cell envelope, among which the activity of the Bam complex. The tool is based on the observation that such a disruption triggers cell envelope stress response systems, such as the σE, Rcs, and Cpx responses. In essence, specific stress-responsive promoters are fused to a gene encoding a bright fluorescent protein to serve as a panel of easy-to-monitor stress reporter plasmids. Using these plasmids, compounds triggering these stress systems and, therefore, putatively disrupting the biogenesis of the cell envelope can be identified by the nature and kinetics of the induced stress responses. We describe here the use of the stress reporter plasmids in high-throughput phenotypic screening using multi-well plates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号